Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11274
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAcikalin, Utku Umur-
dc.contributor.authorKutlu, Mücahid-
dc.date.accessioned2024-04-06T08:09:49Z-
dc.date.available2024-04-06T08:09:49Z-
dc.date.issued2022-
dc.identifier.urihttps://doi.org/10.48550/arXiv.2207.11497-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11274-
dc.description.abstractIn this paper, we propose a novel method for the prior-art search task. We fine-tune SciBERT transformer model using Triplet Network approach, allowing us to represent each patent with a fixed-size vector. This also enables us to conduct efficient vector similarity computations to rank patents in query time. In our experiments, we show that our proposed method outperforms baseline methods.en_US
dc.language.isoenen_US
dc.relation.ispartof3rd Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech2022)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPatent searchen_US
dc.subjecttransformer modelsen_US
dc.subjectinformation retrievalen_US
dc.titlePatent Search Using Triplet Networks Based Fine-Tuned SciBERTen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETU Computer Engineeringen_US
dc.authorid0000-0002-5660-4992-
dc.institutionauthorKutlu, Mücahid-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Show simple item record



CORE Recommender

Page view(s)

60
checked on Nov 4, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.