Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/11274
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Acikalin, Utku Umur | - |
dc.contributor.author | Kutlu, Mücahid | - |
dc.date.accessioned | 2024-04-06T08:09:49Z | - |
dc.date.available | 2024-04-06T08:09:49Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | https://doi.org/10.48550/arXiv.2207.11497 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/11274 | - |
dc.description.abstract | In this paper, we propose a novel method for the prior-art search task. We fine-tune SciBERT transformer model using Triplet Network approach, allowing us to represent each patent with a fixed-size vector. This also enables us to conduct efficient vector similarity computations to rank patents in query time. In our experiments, we show that our proposed method outperforms baseline methods. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | 3rd Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech2022) | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Patent search | en_US |
dc.subject | transformer models | en_US |
dc.subject | information retrieval | en_US |
dc.title | Patent Search Using Triplet Networks Based Fine-Tuned SciBERT | en_US |
dc.type | Conference Object | en_US |
dc.department | TOBB ETU Computer Engineering | en_US |
dc.authorid | 0000-0002-5660-4992 | - |
dc.institutionauthor | Kutlu, Mücahid | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.