Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11275
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDogan, Dilara-
dc.contributor.authorAltun, Bahadir-
dc.contributor.authorZengin, Muhammed Said-
dc.contributor.authorKutlu, Mücahid-
dc.contributor.authorElsayed, Tamer-
dc.date.accessioned2024-04-06T08:09:49Z-
dc.date.available2024-04-06T08:09:49Z-
dc.date.issued2023-
dc.identifier.citationDogan, D., Altun, B., Zengin, M. S., Kutlu, M., & Elsayed, T. (2023, June). Catch Me If You Can: Deceiving Stance Detection and Geotagging Models to Protect Privacy of Individuals on Twitter. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 17, pp. 173-184).-
dc.identifier.isbn1577358791-
dc.identifier.isbn9781577358794-
dc.identifier.issn2334-0770-
dc.identifier.issn2162-3449-
dc.identifier.urihttps://doi.org/10.1609/icwsm.v17i1.22136-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11275-
dc.description.abstractThe recent advances in natural language processing haveyielded many exciting developments in text analysis and lan-guage understanding models; however, these models can alsobe used to track people, bringing severe privacy concerns. Inthis work, we investigate what individuals can do to avoid be-ing detected by those models while using social media plat-forms. We ground our investigation in two exposure-riskytasks, stance detection and geotagging. We explore a varietyof simple techniques for modifying text, such as inserting ty-pos in salient words, paraphrasing, and adding dummy socialmedia posts. Our experiments show that the performance ofBERT-based models fine-tuned for stance detection decreasessignificantly due to typos, but it is not affected by paraphras-ing. Moreover, we find that typos have minimal impact onstate-of-the-art geotagging models due to their increased re-liance on social networks; however, we show that users candeceive those models by interacting with different users, re-ducing their performance by almost 50%.en_US
dc.language.isoenen_US
dc.publisherAIAAen_US
dc.relation.ispartofSeventeenth International AAAI Conference on Web and Social Media (ICWSM2023)173en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleCatch Me If You Can: Deceiving Stance Detection and Geotagging Models To Protect Privacy of Individuals on Twitteren_US
dc.typeConference Objecten_US
dc.departmentTOBB ETU Computer Engineeringen_US
dc.identifier.volume17en_US
dc.identifier.startpage173en_US
dc.identifier.endpage184en_US
dc.authorid0000-0002-5660-4992-
dc.institutionauthorKutlu, Mücahid-
dc.identifier.doi10.1609/icwsm.v17i1.22136-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Show simple item record



CORE Recommender

Page view(s)

68
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.