Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11491
Title: Kantorovich Version of Vector-Valued Shepard Operators
Authors: Duman, Oktay
Della Vecchia, Biancamaria
Erkuş-Duman, Esra
Keywords: multivariate approximation
approximation of vector-valued functions
Shepard operators
Kantorovich operators
matrix summability methods
Cesaro summability
Neural-Network Operators
Interpolation
Convergence
Publisher: MDPI
Source: Duman, O., Della Vecchia, B., & Erkus-Duman, E. (2024). Kantorovich Version of Vector-Valued Shepard Operators. Axioms, 13(3), 181.
Abstract: In the present work, in order to approximate integrable vector-valued functions, we study the Kantorovich version of vector-valued Shepard operators. We also display some applications supporting our results by using parametric plots of a surface and a space curve. Finally, we also investigate how nonnegative regular (matrix) summability methods affect the approximation.
URI: https://doi.org/10.3390/axioms13030181
https://hdl.handle.net/20.500.11851/11491
ISSN: 2075-1680
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
11491.pdf1.76 MBAdobe PDFView/Open
Show full item record



CORE Recommender

Page view(s)

42
checked on Dec 23, 2024

Download(s)

2
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.