Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11493
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTurk, F.-
dc.contributor.authorAkkur, E.-
dc.contributor.authorErogul, O.-
dc.date.accessioned2024-04-20T13:35:37Z-
dc.date.available2024-04-20T13:35:37Z-
dc.date.issued2023-
dc.identifier.issn1210-0552-
dc.identifier.urihttps://doi.org/10.14311/NNW.2023.33.023-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11493-
dc.description.abstractAccording to BI-RADS criteria, radiologists evaluate mammography images, and breast lesions are classified as malignant or benign. In this retrospective study, an evaluation was made on 264 mammogram images of 139 patients. First, data augmentation was applied, and then the total number of images was increased to 565. Two computer-aided models were then designed to classify breast lesions and BI-RADS categories. The first of these models is the support vector machine (SVM) based model, and the second is the convolutional neural network (CNN) based model. The SVM-based model could classify BI-RADS categories and malignant-benign discrimination with an accuracy rate of 86.42% and 92.59%, respectively. On the other hand, the CNN-based model showed 79.01% and 83.95% accuracy for BI-RADS categories and malignant benign discrimination, respectively. These results showed that a well-designed machine learning-based classification model can give better results than a deep learning model. Additionally, it can be used as a secondary system for radiologists to differentiate breast lesions and BI-RADS lesion categories.en_US
dc.language.isoenen_US
dc.publisherAcad Sciences Czech Republic, Inst Computer Scienceen_US
dc.relation.ispartofNeural Network Worlden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbreast canceren_US
dc.subjectmammographyen_US
dc.subjectBI-RADSen_US
dc.subjectconvolutional neural networken_US
dc.subjectsupport vector machinesen_US
dc.titleBi-Rads Categories and Breast Lesions Classification of Mammographic Images Using Artificial Intelligence Diagnostic Modelsen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume33en_US
dc.identifier.issue6en_US
dc.identifier.startpage413en_US
dc.identifier.endpage432en_US
dc.identifier.wosWOS:001175381600004en_US
dc.identifier.scopus2-s2.0-85186953015en_US
dc.institutionauthorErogul, O.-
dc.identifier.doi10.14311/NNW.2023.33.023-
dc.authorwosidtürk, fuat/AGQ-2020-2022-
dc.authorscopusid56404377100-
dc.authorscopusid55260189900-
dc.authorscopusid56247443100-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Aug 31, 2024

Page view(s)

62
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.