Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11554
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTopal, O.A.-
dc.contributor.authorHe, Q.-
dc.contributor.authorDemir, O.T.-
dc.contributor.authorMasoudi, M.-
dc.contributor.authorCavdar, C.-
dc.date.accessioned2024-05-18T16:08:03Z-
dc.date.available2024-05-18T16:08:03Z-
dc.date.issued2023-
dc.identifier.isbn9798350325744-
dc.identifier.issn1058-6393-
dc.identifier.urihttps://doi.org/10.1109/IEEECONF59524.2023.10477038-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11554-
dc.description57th Asilomar Conference on Signals, Systems and Computers, ACSSC 2023 -- 29 October 2023 through 1 November 2023 -- 198545en_US
dc.description.abstractIn cell-free massive MIMO networks, scalability is one of the fundamental problems since a significant number of access points (APs) are widely distributed throughout the network area to cater to the needs of multiple user equipments (UEs). One approach to addressing this issue is through network-centric clustering, which involves dividing the network area into isolated clusters of APs, each connected to its cloud unit (CU). To address these challenges, this paper proposes a deep reinforcement learning (DRL) algorithm that jointly optimizes the network-centric cluster boundaries and decides AP deployment in each cluster to improve long-term energy efficiency. The DRL agent also aims to minimize the average UE drop rate by considering the delay requirements of each UE's requested service. The results show that at least 16% improvement in energy efficiency is obtained compared to the heuristically developed benchmarks. © 2023 IEEE.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.relation.ispartofConference Record - Asilomar Conference on Signals, Systems and Computersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectaccess point deploymenten_US
dc.subjectcell-free cluster formationen_US
dc.subjectCell-free massive MIMOen_US
dc.subjectdeep reinforcement learningen_US
dc.subjectenergy efficiencyen_US
dc.subjectnetwork-centric clusteringen_US
dc.titleDrl-Based Joint Ap Deployment and Network-Centric Cluster Formation for Maximizing Long-Term Energy Efficiency in Cell-Free Massive Mimoen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.startpage993en_US
dc.identifier.endpage999en_US
dc.identifier.wosWOS:001207755100179en_US
dc.identifier.scopus2-s2.0-85190369985en_US
dc.institutionauthorDemir, O.T.-
dc.identifier.doi10.1109/IEEECONF59524.2023.10477038-
dc.authorscopusid57190742811-
dc.authorscopusid58542904400-
dc.authorscopusid55807906700-
dc.authorscopusid57188558577-
dc.authorscopusid24178594900-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

104
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.