Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11555
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKosasih, A.-
dc.contributor.authorDemir, O.T.-
dc.contributor.authorBjornson, E.-
dc.date.accessioned2024-05-18T16:08:03Z-
dc.date.available2024-05-18T16:08:03Z-
dc.date.issued2023-
dc.identifier.isbn9798350325744-
dc.identifier.issn1058-6393-
dc.identifier.urihttps://doi.org/10.1109/IEEECONF59524.2023.10476971-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11555-
dc.description57th Asilomar Conference on Signals, Systems and Computers, ACSSC 2023 -- 29 October 2023 through 1 November 2023 - 198545en_US
dc.description.abstractAccurate channel estimation is critical to fully ex-ploit the beamforming gains when communicating with extremely large aperture arrays. The propagation distances between the user and receiver, which potentially has thousands of anten-nas/elements, are such that they are located in the radiative near-field region of each other when considering the Fraunhofer distance of the entire array. Therefore, it is imperative to consider near-field effects to achieve proper channel estimation. This paper proposes a parametric multi-user near-field channel estimation algorithm based on MUltiple SIgnal Classification (MUSIC) method to obtain the essential parameters describing the users' locations. We derive the estimated channel by incorporating the estimated parameters into the near-field channel model. Additionally, we implement a least-squares-based estimation corrector, resulting in a precise near-field channel estimation. Simulation results demonstrate that our proposed scheme outperforms classical least-squares and minimum mean-square error channel estimation methods in terms of normalized beamforming gain and normalized mean-square error. © 2023 IEEE.en_US
dc.description.sponsorshipVetenskapsrådet, VRen_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.relation.ispartofConference Record - Asilomar Conference on Signals, Systems and Computersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectactive arraysen_US
dc.subjectchannel estimationen_US
dc.subjectfinite-depth beamformingen_US
dc.subjectMUSICen_US
dc.subjectRadiative near-fielden_US
dc.titleParametric Near-Field Channel Estimation for Extremely Large Aperture Arraysen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.startpage162en_US
dc.identifier.endpage166en_US
dc.identifier.wosWOS:001207755100029en_US
dc.identifier.scopus2-s2.0-85190359261en_US
dc.institutionauthorDemir, O.T.-
dc.identifier.doi10.1109/IEEECONF59524.2023.10476971-
dc.authorscopusid57202575500-
dc.authorscopusid55807906700-
dc.authorscopusid24478602800-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

70
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.