Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11573
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüven, Mesut-
dc.date.accessioned2024-06-19T14:55:30Z-
dc.date.available2024-06-19T14:55:30Z-
dc.date.issued2024-
dc.identifier.issn2473-6988-
dc.identifier.urihttps://doi.org/10.3934/math.2024739-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11573-
dc.description.abstractThe escalating sophistication of malware poses a formidable security challenge, as it evades traditional protective measures. Static analysis, an initial step in malware investigation, involves code scrutiny without actual execution. One static analysis approach employs the conversion of executable files into image representations, harnessing the potency of deep learning models. Convolutional neural networks (CNNs), particularly adept at image classification, have potential for malware detection. However, their inclination towards structured data requires a preprocessing phase to convert software into image -like formats. This paper outlines a methodology for malware detection that involves applying deep learning models to image -converted executable files. Experimental evaluations have been performed by using CNN models, autoencoder-based models, and pre -trained counterparts, all of which have exhibited commendable performance. Consequently, employing deep learning for imageconverted executable analysis emerges as a fitting strategy for the static analysis of software. This research is significant because it utilized the largest dataset to date and encompassed a wide range of deep learning models, many of which have not previously been tested together.en_US
dc.language.isoenen_US
dc.publisherAmer Inst Mathematical Sciences-Aimsen_US
dc.relation.ispartofAims mathematicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectartificial intelligenceen_US
dc.subjectdeep learningen_US
dc.subjectconvolutional neural networksen_US
dc.subjectautoencodersen_US
dc.subjecttransfer learningen_US
dc.subjectmalware detectionen_US
dc.subjectexecutable filesen_US
dc.subjectClassificationen_US
dc.titleLeveraging Deep Learning and Image Conversion of Executable Files for Effective Malware Detection: a Static Malware Analysis Approachen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume9en_US
dc.identifier.issue6en_US
dc.identifier.startpage15223en_US
dc.identifier.endpage15245en_US
dc.identifier.wosWOS:001224335600009-
dc.identifier.scopus2-s2.0-85193389937-
dc.institutionauthorGüven, Mesut-
dc.identifier.doi10.3934/math.2024739-
dc.authorscopusid56343141800-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

18
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.