Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11582
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAminiranjbar, Zahra-
dc.contributor.authorAkın Gültakti, Çaglanaz-
dc.contributor.authorAlangari, Mashari Nasser-
dc.contributor.authorWang, Yiren-
dc.contributor.authorDemir, Büşra-
dc.contributor.authorKöker, Zeynep-
dc.contributor.authorDas, Arindam K.-
dc.date.accessioned2024-06-19T14:55:32Z-
dc.date.available2024-06-19T14:55:32Z-
dc.date.issued2024-
dc.identifier.issn2379-3694-
dc.identifier.urihttps://doi.org/10.1021/acssensors.3c02734-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11582-
dc.description.abstractThe global COVID-19 pandemic has highlighted the need for rapid, reliable, and efficient detection of biological agents and the necessity of tracking changes in genetic material as new SARS-CoV-2 variants emerge. Here, we demonstrate that RNA-based, single-molecule conductance experiments can be used to identify specific variants of SARS-CoV-2. To this end, we (i) select target sequences of interest for specific variants, (ii) utilize single-molecule break junction measurements to obtain conductance histograms for each sequence and its potential mutations, and (iii) employ the XGBoost machine learning classifier to rapidly identify the presence of target molecules in solution with a limited number of conductance traces. This approach allows high-specificity and high-sensitivity detection of RNA target sequences less than 20 base pairs in length by utilizing a complementary DNA probe capable of binding to the specific target. We use this approach to directly detect SARS-CoV-2 variants of concerns B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron) and further demonstrate that the specific sequence conductance is sensitive to nucleotide mismatches, thus broadening the identification capabilities of the system. Thus, our experimental methodology detects specific SARS-CoV-2 variants, as well as recognizes the emergence of new variants as they arise.en_US
dc.description.sponsorshipNational Science Foundation Future Manufacturing Program [NSF-2036865/2328217]; Keck Foundation; NSF Semisyn bio [2027165]; Future of Manufacturing [2036865]en_US
dc.description.sponsorshipJ.H. acknowledges funding support from the National Science Foundation Future Manufacturing Program, NSF-2036865/2328217 and the Keck Foundation. M.P.A. acknowledges NSF Semisyn bio grant number 2027165 and Future of Manufacturing grant number 2036865. The authors also acknowledge using TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).en_US
dc.language.isoenen_US
dc.publisherAmer Chemical Socen_US
dc.relation.ispartofACS sensorsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbiosensorsen_US
dc.subjectmolecular electronicsen_US
dc.subjectSARS-CoV-2variant detectionen_US
dc.subjectsingle-molecule break junctionen_US
dc.subjectXGBoost machine learningen_US
dc.subjectElectrical detectionen_US
dc.subjectcharge-transporten_US
dc.subjectnucleic-acidsen_US
dc.titleIdentifying SARS-CoV-2 Variants Using Single-Molecule Conductance Measurementsen_US
dc.typeArticleen_US
dc.typeArticle; Early Accessen_US
dc.departmentTOBB ETÜen_US
dc.authoridAkin Gultakti, Caglanaz/0000-0002-0227-1002-
dc.authoridOren, Ersin Emre/0000-0001-5902-083X-
dc.authoridWang, Yiren/0000-0003-1102-4609-
dc.authoridDemir, Busra/0000-0002-3911-2291-
dc.authoridHihath, Joshua/0000-0002-2949-9293-
dc.identifier.wosWOS:001229512300001en_US
dc.identifier.scopus2-s2.0-85194058508en_US
dc.institutionauthorAkın Gültakti, Çaglanaz-
dc.institutionauthorDemir, Büşra-
dc.institutionauthorKöker, Zeynep-
dc.identifier.pmid38773960en_US
dc.identifier.doi10.1021/acssensors.3c02734-
dc.authorwosidOren, Ersin Emre/AGQ-5958-2022-
dc.authorwosidDemir, Busra/W-1919-2018-
dc.authorscopusid58943794300-
dc.authorscopusid58075821500-
dc.authorscopusid57204556287-
dc.authorscopusid57225920866-
dc.authorscopusid57204554850-
dc.authorscopusid58943424400-
dc.authorscopusid55450734000-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairetypeArticle; Early Access-
item.languageiso639-1en-
item.grantfulltextnone-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

70
checked on Nov 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.