Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11588
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCampbell, John m.-
dc.contributor.authorKılıç, Emrah-
dc.date.accessioned2024-06-19T14:55:32Z-
dc.date.available2024-06-19T14:55:32Z-
dc.date.issued2024-
dc.identifier.issn0015-0517-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11588-
dc.description.abstractConsider the sequences ( U-n : n is an element of N-0 ) and ( V-n : n is an element of N) satisfying the second order linear recurrences U-n = pU(n-1) + Un-2 and V-n = pV (n-1) + Vn-2 with the initial conditions U-0 = 0, U-1 = 1, V-0 = 2, and V-1 = p. We explore the problem of evaluating binomial sums involving products consisting of entries in the U- and V - sequences. We apply a hypergeometric approach, inspired by Dilcher's work on hypergeometric identities for Fibonacci numbers, to obtain many new identities for sums involving U and V and products of binomial coefficients, including a non-hypergeometric analogue of Dixon's binomial identity.en_US
dc.language.isoenen_US
dc.publisherFibonacci Assocen_US
dc.relation.ispartofFibonacci quarterlyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleBinomial Sums Involving Second-Order Linearly Recurrent Sequencesen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume62en_US
dc.identifier.issue1en_US
dc.identifier.startpage57en_US
dc.identifier.endpage64en_US
dc.identifier.wosWOS:001215841400006en_US
dc.institutionauthorKılıç, Emrah-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

124
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.