Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11637
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarahan, M.-
dc.date.accessioned2024-07-21T18:45:42Z-
dc.date.available2024-07-21T18:45:42Z-
dc.date.issued2024-
dc.identifier.isbn9798350394634-
dc.identifier.urihttps://doi.org/10.1109/HORA61326.2024.10550704-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11637-
dc.description6th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, HORA 2024 -- 23 May 2024 through 25 May 2024 -- 200165en_US
dc.description.abstractToday, Quadrotor Unmanned Aerial Vehicles (UAV) are used in a wide range of areas such as surveillance, fire fighting, search and rescue, disinfection, cargo transportation and photography. The use of quadrotors in a very wide area makes their trajectory tracking issue important. In order for quadrotors to fulfil their mission, they must be able to successfully track trajectory. In this study, the trajectory tracking of the quadrotor was achieved with an algorithm based on off-policy reinforcement learning under random noise. Modeling and simulations were carried out using the MATLAB program. Simulations were performed for the x, y, z trajectories and roll, pitch, yaw angles of the quadrotor and it was observed that the given references were followed successfully. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofHORA 2024 - 6th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectdata modelsen_US
dc.subjectPD controlen_US
dc.subjectquadrotoren_US
dc.subjectreinforcement learningen_US
dc.subjecttrajectory trackingen_US
dc.subjectunmanned aerial vehiclesen_US
dc.subjectAircraft controlen_US
dc.subjectAircraft detectionen_US
dc.subjectAntennasen_US
dc.subjectFire extinguishersen_US
dc.subjectLearning systemsen_US
dc.subjectMATLABen_US
dc.subjectTrajectoriesen_US
dc.subjectUnmanned aerial vehicles (UAV)en_US
dc.subjectAerial vehicleen_US
dc.subjectFire rescueen_US
dc.subjectOptimal trajectoriesen_US
dc.subjectPD controlen_US
dc.subjectQuad rotorsen_US
dc.subjectQuadrotor unmanned aerial vehiclesen_US
dc.subjectReinforcement learningsen_US
dc.subjectTrajectory tracking controlen_US
dc.subjectTrajectory-trackingen_US
dc.subjectUnmanned aerial vehicleen_US
dc.subjectReinforcement learningen_US
dc.titleOptimal Trajectory Tracking Control for a Quadrotor Uav Based on Off-Policy Reinforcement Learningen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.scopus2-s2.0-85196754963en_US
dc.institutionauthorKarahan, M.-
dc.identifier.doi10.1109/HORA61326.2024.10550704-
dc.authorscopusid57216759940-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

56
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.