Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/11702
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xue, W. | - |
dc.contributor.author | Lian, B. | - |
dc.contributor.author | Kartal, Y. | - |
dc.contributor.author | Fan, J. | - |
dc.contributor.author | Chai, T. | - |
dc.contributor.author | Lewis, F.L. | - |
dc.date.accessioned | 2024-08-18T17:23:05Z | - |
dc.date.available | 2024-08-18T17:23:05Z | - |
dc.date.issued | 2025 | - |
dc.identifier.issn | 1545-5955 | - |
dc.identifier.uri | https://doi.org/10.1109/TASE.2024.3427657 | - |
dc.description.abstract | This paper proposes a data-driven model-free inverse reinforcement learning (IRL) algorithm tailored for solving an inverse H∞ control problem. In the problem, both an expert and a learner engage in H∞ control to reject disturbances and the learner’s objective is to imitate the expert’s behavior by reconstructing the expert’s performance function through IRL techniques. Introducing zero-sum game principles, we first formulate a model-based single-loop IRL policy iteration algorithm that includes three key steps: updating the policy, action, and performance function using a new correction formula and the standard inverse optimal control principles. Building upon the model-based approach, we propose a model-free single-loop off-policy IRL algorithm that eliminates the need for initial stabilizing policies and prior knowledge of the dynamics of expert and learner. Also, we provide rigorous proof of convergence, stability, and Nash optimality to guarantee the effectiveness and reliability of the proposed algorithms. Furthermore, we showcase the efficiency of our algorithm through simulations and experiments, highlighting its advantages compared to the existing methods. © 2004-2012 IEEE. | en_US |
dc.description.sponsorship | National Natural Science Foundation of China, NSFC, (61991404, U22A2049, 62394342); National Natural Science Foundation of China, NSFC; Liaoning Revitalization Talents Program, (XLYC2007135); Liaoning Revitalization Talents Program; 2020 Science and Technology Major Project of Liaoning Province, (2020JH1/10100008); Key Research and Development Program of Liaoning Province, (2023JH26/10200011); Key Research and Development Program of Liaoning Province; Liaoning Liaohe Laboratory, (LLL23ZZ-05-01) | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | IEEE Transactions on Automation Science and Engineering | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Imitation Learning | en_US |
dc.subject | Inverse H∞ Control | en_US |
dc.subject | Inverse Reinforcement Learning | en_US |
dc.subject | Reinforcement Learning | en_US |
dc.subject | Zero-Sum Games | en_US |
dc.title | Model-Free Inverse H-Infinity Control for Imitation Learning | en_US |
dc.type | Article | en_US |
dc.department | TOBB University of Economics and Technology | en_US |
dc.identifier.volume | 22 | en_US |
dc.identifier.startpage | 5661 | en_US |
dc.identifier.endpage | 5672 | en_US |
dc.identifier.wos | WOS:001279014600001 | - |
dc.identifier.scopus | 2-s2.0-86000669260 | - |
dc.identifier.doi | 10.1109/TASE.2024.3427657 | - |
dc.authorscopusid | 57200151815 | - |
dc.authorscopusid | 57197705065 | - |
dc.authorscopusid | 57211691392 | - |
dc.authorscopusid | 23477204200 | - |
dc.authorscopusid | 57576904000 | - |
dc.authorscopusid | 24729085600 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q2 | - |
dc.description.woscitationindex | Science Citation Index Expanded | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
4
checked on Apr 12, 2025
Page view(s)
78
checked on Apr 14, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.