Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXue, W.-
dc.contributor.authorLian, B.-
dc.contributor.authorKartal, Y.-
dc.contributor.authorFan, J.-
dc.contributor.authorChai, T.-
dc.contributor.authorLewis, F.L.-
dc.date.accessioned2024-08-18T17:23:05Z-
dc.date.available2024-08-18T17:23:05Z-
dc.date.issued2025-
dc.identifier.issn1545-5955-
dc.identifier.urihttps://doi.org/10.1109/TASE.2024.3427657-
dc.description.abstractThis paper proposes a data-driven model-free inverse reinforcement learning (IRL) algorithm tailored for solving an inverse H∞ control problem. In the problem, both an expert and a learner engage in H∞ control to reject disturbances and the learner’s objective is to imitate the expert’s behavior by reconstructing the expert’s performance function through IRL techniques. Introducing zero-sum game principles, we first formulate a model-based single-loop IRL policy iteration algorithm that includes three key steps: updating the policy, action, and performance function using a new correction formula and the standard inverse optimal control principles. Building upon the model-based approach, we propose a model-free single-loop off-policy IRL algorithm that eliminates the need for initial stabilizing policies and prior knowledge of the dynamics of expert and learner. Also, we provide rigorous proof of convergence, stability, and Nash optimality to guarantee the effectiveness and reliability of the proposed algorithms. Furthermore, we showcase the efficiency of our algorithm through simulations and experiments, highlighting its advantages compared to the existing methods. © 2004-2012 IEEE.en_US
dc.description.sponsorshipNational Natural Science Foundation of China, NSFC, (61991404, U22A2049, 62394342); National Natural Science Foundation of China, NSFC; Liaoning Revitalization Talents Program, (XLYC2007135); Liaoning Revitalization Talents Program; 2020 Science and Technology Major Project of Liaoning Province, (2020JH1/10100008); Key Research and Development Program of Liaoning Province, (2023JH26/10200011); Key Research and Development Program of Liaoning Province; Liaoning Liaohe Laboratory, (LLL23ZZ-05-01)en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Transactions on Automation Science and Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectImitation Learningen_US
dc.subjectInverse H∞ Controlen_US
dc.subjectInverse Reinforcement Learningen_US
dc.subjectReinforcement Learningen_US
dc.subjectZero-Sum Gamesen_US
dc.titleModel-Free Inverse H-Infinity Control for Imitation Learningen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume22en_US
dc.identifier.startpage5661en_US
dc.identifier.endpage5672en_US
dc.identifier.wosWOS:001279014600001-
dc.identifier.scopus2-s2.0-86000669260-
dc.identifier.doi10.1109/TASE.2024.3427657-
dc.authorscopusid57200151815-
dc.authorscopusid57197705065-
dc.authorscopusid57211691392-
dc.authorscopusid23477204200-
dc.authorscopusid57576904000-
dc.authorscopusid24729085600-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Apr 12, 2025

Page view(s)

78
checked on Apr 14, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.