Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1175
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜçer, Serkan-
dc.contributor.authorKoçak, Yunuscan-
dc.contributor.authorÖzyer, Tansel-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2019-06-26T07:40:36Z
dc.date.available2019-06-26T07:40:36Z
dc.date.issued2017-10
dc.identifier.citationÜçer, S., Kocak, Y., Ozyer, T., & Alhajj, R. (2017). Social network Analysis-based classifier (SNAc): A case study on time course gene expression data. Computer methods and programs in biomedicine, 150, 73-84.en_US
dc.identifier.issn0169-2607
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0169260717302225?via%3Dihub-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1175-
dc.description.abstractBackground and objectives: Social Network Analysis is an attractive approach to model and analyze complex networks. In recent years, several bioinformatics related networks have been modeled and analyzed thoroughly using social network analysis. The objective of this study is to build a social network analysis based classifier for time sequential data. Methods: In this work, we model a genomic time sequential data as a 'social' network of interactions. We define interactions as similarity of patients' measurements. Using this 'genomic social network', we develop a classification model called Social Network Analysis-based Classifier. Results: We conducted some experiments to demonstrate how the developed Social Network Analysis-based Classifier outperforms traditional classifiers by effectively classifying a time sequential genomic dataset. Best achieved accuracy is 64.51% and best f-measure is 78.34%. Conclusions: Our study emphasized Social Network Analysis-based Classifier Model as a powerful technique for analyzing a time sequential dataset. Eventually, the plan is to develop and evolve the Social Network Analysis-based Classifier model into a general classifier. (C) 2017 Published by Elsevier Ireland Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Ireland Ltd.en_US
dc.relation.ispartofComputer Methods And Programs in Biomedicineen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGenomic İnteractionsen_US
dc.subjectSocial Network Analysisen_US
dc.subjectSocial Network Classifieren_US
dc.subjectGene Expression Dataen_US
dc.titleSocial Network Analysis-Based Classifier (snac): a Case Study on Time Course Gene Expression Dataen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume150
dc.identifier.startpage73
dc.identifier.endpage84
dc.identifier.wosWOS:000410581900007en_US
dc.identifier.scopus2-s2.0-85027877303en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.pmid28859830en_US
dc.identifier.doi10.1016/j.cmpb.2017.06.015-
dc.authorscopusid8914139000-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

10
checked on Dec 21, 2024

Page view(s)

118
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.