Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1176
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAksaç, Alper-
dc.contributor.authorÖzyer, Tansel-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2019-06-26T07:40:36Z
dc.date.available2019-06-26T07:40:36Z
dc.date.issued2017-06
dc.identifier.citationAksac, A., Ozyer, T., & Alhajj, R. (2017). Complex networks driven salient region detection based on superpixel segmentation. Pattern Recognition, 66, 268-279.en_US
dc.identifier.issn0031-3203
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0031320317300110?via%3Dihub-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1176-
dc.description.abstractIn this paper, we propose an efficient method for salient region detection. First, the image is decomposed by using superpixel segmentation which groups similar pixels and generates compact regions. Based upon the generated superpixels, similarity between the regions is calculated by benefiting from color, location, histogram, intensity, and area information of each region as well as community identification via complex networks theory in the over-segmented image. Then, contrast, distribution and complex networks based saliency maps are generated by using the mentioned features. These saliency maps are used to create a final saliency map. The applicability, effectiveness and consistency of the proposed approach are illustrated by conducting some experiments using publicly available datasets. The tests have been used to compare the proposed method with some state-of-the-art methods. The reported results cover qualitative and quantitative assessments which demonstrate that our approach outputs high quality saliency maps and mostly achieves the highest precision rate compared to the other methods.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Ltd.en_US
dc.relation.ispartofPattern Recognitionen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSuperpixelen_US
dc.subjectSegmentationen_US
dc.subjectSalient Region Detectionen_US
dc.subjectSaliency Mapen_US
dc.subjectComplex Networksen_US
dc.titleComplex Networks Driven Salient Region Detection Based on Superpixel Segmentationen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume66
dc.identifier.startpage268
dc.identifier.endpage279
dc.identifier.wosWOS:000397371800025en_US
dc.identifier.scopus2-s2.0-85011039345en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.doi10.1016/j.patcog.2017.01.010-
dc.authorscopusid8914139000-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

25
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

34
checked on Dec 21, 2024

Page view(s)

124
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.