Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11778
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞahin, B.M.-
dc.contributor.authorŞanlı, S.-
dc.contributor.authorErdoğan, K.-
dc.contributor.authorDurmuş, M.E.-
dc.contributor.authorKara, Ö.-
dc.contributor.authorKaymak, B.-
dc.contributor.authorKara, M.-
dc.date.accessioned2024-09-22T13:30:28Z-
dc.date.available2024-09-22T13:30:28Z-
dc.date.issued2024-
dc.identifier.isbn979-835038896-1-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10600840-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11778-
dc.descriptionBerdan Civata B.C.; et al.; Figes; Koluman; Loodos; Tarsus Universityen_US
dc.description32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235en_US
dc.description.abstractSarcopenia, a disease defined by the loss of muscle mass and function, plays a significant role in the quality of life of the elderly. Recent studies suggest that the loss of muscle strength and function associated with sarcopenia may be linked to neural control mechanisms. This study aimed to find a neurocognitive biomarker for sarcopenia and to classify it using fNIRS and machine learning methods. Connectivity matrices created from fNIRS data obtained from the Hand Grip experiment, conducted on 50 participants (27 controls, 23 sarcopenic), were used as features in the classification. This resulted in the Linear SVM model showing the highest performance with an 87.4% accuracy rate and 0.94 AUC value. These results indicate that functional connectivity data obtained through fNIRS could serve as an objective biomarker for sarcopenia classification, and that high-performance classification is feasible using this biomarker. © 2024 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfNIRSen_US
dc.subjectMachine Learningen_US
dc.subjectNeurocognitionen_US
dc.subjectSarcopeniaen_US
dc.subjectClassification (of information)en_US
dc.subjectLearning systemsen_US
dc.subjectMuscleen_US
dc.subjectSupport vector machinesen_US
dc.subjectFNIRSen_US
dc.subjectFunctional near infrared spectroscopyen_US
dc.subjectMachine-learningen_US
dc.subjectMuscle functionen_US
dc.subjectMuscle massen_US
dc.subjectMuscle strengthen_US
dc.subjectNeurocognitionen_US
dc.subjectPerformanceen_US
dc.subjectQuality of lifeen_US
dc.subjectSarcopeniaen_US
dc.subjectBiomarkersen_US
dc.titleIdentification of Neurological Markers of Sarcopenia Disease Using Functional Near-Infrared Spectroscopy and Machine Learningen_US
dc.title.alternativeSarkopeni Hastalığının Nörolojik Belirteçlerinin İşlevsel Yakın Kızılaltı Spektroskopisi ve Makine Öğrenmesi Kullanılarak Belirlenmesien_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.scopus2-s2.0-85200866905-
dc.institutionauthor-
dc.identifier.doi10.1109/SIU61531.2024.10600840-
dc.authorscopusid59254028600-
dc.authorscopusid59254768400-
dc.authorscopusid57193447522-
dc.authorscopusid34569135700-
dc.authorscopusid59287813200-
dc.authorscopusid6602638612-
dc.authorscopusid7006159444-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.grantfulltextnone-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

8
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.