Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/11785
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cai, T. | - |
dc.contributor.author | Wang, Q. | - |
dc.contributor.author | Zhang, S. | - |
dc.contributor.author | Demir, O.T. | - |
dc.contributor.author | Cavdar, C. | - |
dc.date.accessioned | 2024-09-22T13:30:57Z | - |
dc.date.available | 2024-09-22T13:30:57Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 979-835034319-9 | - |
dc.identifier.uri | https://doi.org/10.1109/ICMLCN59089.2024.10624787 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/11785 | - |
dc.description | 1st IEEE International Conference on Machine Learning for Communication and Networking, ICMLCN 2024 -- 5 May 2024 through 8 May 2024 -- Stockholm -- 201880 | en_US |
dc.description.abstract | We develop a multi-agent reinforcement learning (MARL) algorithm to minimize the total energy consumption of multiple massive MIMO (multiple-input multiple-output) base stations (BSs) in a multi-cell network while preserving the overall quality-of-service (QoS) by making decisions on the multi-level advanced sleep modes (ASMs) and antenna switching of these BSs. The problem is modeled as a decentralized partially observable Markov decision process (DEC-POMDP) to enable collaboration between individual BSs, which is necessary to tackle inter-cell interference. A multi-agent proximal policy optimization (MAPPO) algorithm is designed to learn a collaborative BS control policy. To enhance its scalability, a modified version called MAPPO-neighbor policy is further proposed. Simulation results demonstrate that the trained MAPPO agent achieves better performance compared to baseline policies. Specifically, compared to the auto sleep mode 1 (symbol-level sleeping) algorithm, the MAPPO-neighbor policy reduces power consumption by approximately 8.7% during low-traffic hours and improves energy efficiency by approximately 19% during high-traffic hours, respectively. © 2024 IEEE. | en_US |
dc.description.sponsorship | VINNOVA; Swedish Innovation Agency | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 2024 IEEE International Conference on Machine Learning for Communication and Networking, ICMLCN 2024 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | antenna switching | en_US |
dc.subject | BS control for energy saving | en_US |
dc.subject | massive MIMO | en_US |
dc.subject | multi-agent reinforcement learning | en_US |
dc.subject | Energy efficiency | en_US |
dc.subject | Energy utilization | en_US |
dc.subject | Reinforcement learning | en_US |
dc.subject | Sleep research | en_US |
dc.subject | Antenna switching | en_US |
dc.subject | Base station control for energy saving | en_US |
dc.subject | Energy savings | en_US |
dc.subject | Energy-savings | en_US |
dc.subject | Massive multiple-input multiple-output | en_US |
dc.subject | Multi agent | en_US |
dc.subject | Multi-agent reinforcement learning | en_US |
dc.subject | Multiple inputs | en_US |
dc.subject | Multiple outputs | en_US |
dc.subject | Policy optimization | en_US |
dc.subject | Markov processes | en_US |
dc.title | Multi-Agent Reinforcement Learning for Energy Saving in Multi-Cell Massive Mimo Systems | en_US |
dc.type | Conference Object | en_US |
dc.department | TOBB ETÜ | en_US |
dc.identifier.startpage | 480 | en_US |
dc.identifier.endpage | 485 | en_US |
dc.identifier.wos | WOS:001307813600081 | en_US |
dc.identifier.scopus | 2-s2.0-85202434656 | en_US |
dc.institutionauthor | … | - |
dc.identifier.doi | 10.1109/ICMLCN59089.2024.10624787 | - |
dc.authorscopusid | 58726118000 | - |
dc.authorscopusid | 58893931800 | - |
dc.authorscopusid | 57201675329 | - |
dc.authorscopusid | 55807906700 | - |
dc.authorscopusid | 24178594900 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.