Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1178
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoçak, Yunuscan-
dc.contributor.authorÖzyer, Tansel-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2019-06-26T07:40:36Z
dc.date.available2019-06-26T07:40:36Z
dc.date.issued2016-12-09
dc.identifier.citationKoçak, Y., Özyer, T., & Alhajj, R. (2016). Utilizing maximal frequent itemsets and social network analysis for HIV data analysis. Journal of cheminformatics, 8(1), 71.en_US
dc.identifier.issn1758-2946
dc.identifier.urihttps://jcheminf.biomedcentral.com/articles/10.1186/s13321-016-0184-9-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1178-
dc.description.abstractAcquired immune deficiency syndrome is a deadly disease which is caused by human immunodeficiency virus (HIV). This virus attacks patients immune system and effects its ability to fight against diseases. Developing effective medicine requires understanding the life cycle and replication ability of the virus. HIV-1 protease enzyme is used to cleave an octamer peptide into peptides which are used to create proteins by the virus. In this paper, a novel feature extraction method is proposed for understanding important patterns in octamer's cleavability. This feature extraction method is based on data mining techniques which are used to find important relations inside a dataset by comprehensively analyzing the given data. As demonstrated in this paper, using the extracted information in the classification process yields important results which may be taken into consideration when developing a new medicine. We have used 746 and 1625, Impens and schilling data instances from the 746-dataset. Besides, we have performed social network analysis as a complementary alternative method.en_US
dc.language.isoenen_US
dc.publisherBiomed Central Ltd.en_US
dc.relation.ispartofJournal Of Cheminformaticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectVirusesen_US
dc.subjectWinden_US
dc.subjectHIV-1 proteaseen_US
dc.titleUtilizing Maximal Frequent Itemsets and Social Network Analysis for Hiv Data Analysisen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume8
dc.identifier.wosWOS:000391705200001en_US
dc.identifier.scopus2-s2.0-85003467440en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.doi10.1186/s13321-016-0184-9-
dc.authorscopusid8914139000-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Utilizing_TO.pdf2.57 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

1
checked on Dec 21, 2024

Page view(s)

68
checked on Dec 23, 2024

Download(s)

38
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.