Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11791
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAad, G.-
dc.contributor.authorAakvaag, E.-
dc.contributor.authorAbbott, B.-
dc.contributor.authorAbdelhameed, S.-
dc.contributor.authorAbeling, K.-
dc.contributor.authorAbicht, N.J.-
dc.contributor.authorAbidi, S.H.-
dc.date.accessioned2024-09-22T13:30:57Z-
dc.date.available2024-09-22T13:30:57Z-
dc.date.issued2024-
dc.identifier.issn1748-0221-
dc.identifier.urihttps://doi.org/10.1088/1748-0221/19/08/P08018-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11791-
dc.description.abstractThe identification of top quark decays where the top quark has a large momentum transverse to the beam axis, known as top tagging, is a crucial component in many measurements of Standard Model processes and searches for beyond the Standard Model physics at the Large Hadron Collider. Machine learning techniques have improved the performance of top tagging algorithms, but the size of the systematic uncertainties for all proposed algorithms has not been systematically studied. This paper presents the performance of several machine learning based top tagging algorithms on a dataset constructed from simulated proton-proton collision events measured with the ATLAS detector at √s = 13 TeV. The systematic uncertainties associated with these algorithms are estimated through an approximate procedure that is not meant to be used in a physics analysis, but is appropriate for the level of precision required for this study. The most performant algorithms are found to have the largest uncertainties, motivating the development of methods to reduce these uncertainties without compromising performance. To enable such efforts in the wider scientific community, the datasets used in this paper are made publicly available. © 2024 CERN for the benefit of the ATLAS collaboration. Published by IOP Publishing Ltd on behalf of Sissa Medialab.en_US
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades, MCIU; BSF-NSF; Australian Research Council, ARC; DRAC; La Caixa Banking Foundation; Centre National pour la Recherche Scientifique et Technique, CNRST; Fundação para a Ciência e a Tecnologia, FCT; European Union, Future Artificial Intelligence Research; Cooperative Research Centres, Australian Government Department of Industry, CRCs; Center for Advancing Research Impact in Society, ARIS; National Science Foundation, NSF; CEA-DRF; Science and Technology Facilities Council, STFC; Horizon 2020, ICSC-NextGenerationEU; HORIZON EUROPE Marie Sklodowska-Curie Actions, MSCA; INFN-CNAF; Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO; Ministry of Science and Technology, Taiwan, MOST; Israel Science Foundation, ISF; Wallenberg Foundation; Leverhulme Trust; Baden-Württemberg Stiftung, BWS; MVZI; PROMETEO; Neubauer Family Foundation, NFF; Staatssekretariat für Bildung, Forschung und Innovation, SBFI; IDUB AGH; Generalitat de Catalunya; Instituto Nazionale di Fisica Nucleare, INFN; Bundesministerium für Wissenschaft, Forschung und Wirtschaft, BMWFW; Austrian Science Fund, FWF; Yerevan Physics Institute; Agencia Nacional de Investigación y Desarrollo, ANID; Bundesministerium für Bildung und Forschung, BMBF; Helmholtz-Gemeinschaft, HGF; Danmarks Grundforskningsfond, DNRF; Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq; Forskningsrådet om Hälsa, Arbetsliv och Välfärd, FORTE; Karlsruhe Institute of Technology, KIT; Canarie; GridKA; Horizon 2020 Framework Programme, H2020; Göran Gustafssons Stiftelser; European Commission, EC; Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, MPNTR; European Cooperation in Science and Technology, COST; EU-ESF; International Council of Shopping Centers, ICSC; RGC; Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP; PRIMUS; Institutul de Fizică Atomică, IFA; Natural Sciences and Engineering Research Council of Canada, NSERC; Nella and Leon Benoziyo Center for Neurological Diseases, Weizmann Institute of Science; GenT Programmes Generalitat Valenciana, Spain; National Science and Technology Council, NSTC; Irish Rugby Football Union, IRFU; Cantons of Bern and Geneva; Chinese Academy of Sciences, CAS; Defence Science Institute, DSI; MNE; Agencia Nacional de Promoción Científica y Tecnológica, ANPCyT; Royal Society; Minerva Foundation; CERN-CZ; National Research Foundation, NRF; Ministerstwo Edukacji i Nauki, MNiSW; Generalitat Valenciana, GVA; CERN; National Research Council Canada, NRC; Brookhaven National Laboratory, BNL; Alexander von Humboldt-Stiftung, AvH; Multiple Sclerosis Scientific Research Foundation, MSSRF; Caring Futures Institute, Flinders University, CFI; British Columbia Knowledge Development Fund, BCKDF; Ministry of Education, Culture, Sports, Science and Technology, MEXT; UK Research and Innovation, UKRI; Australian Education International, Australian Government, AEI; Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT, (1240864, 1230987, 1230812); Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, SNF, (RPG-2020-004, NIF-R1-231091, PCEFP2-194658); FAIR-NextGenerationEU, (PE00000013); Narodowa Agencja Wymiany Akademickiej, NAWA, (PPN/PPO/2020/1/00002/U/00001); Deutsche Forschungsgemeinschaft, DFG, (DFG - CR 312/5-2, DFG - 469666862); H2020 European Research Council, ERC, (ERC - 101002463); Japan Society for the Promotion of Science, JSPS, (JP22KK0227, JP22H04944, JP23KK0245, JP22H01227); Ministerio de Ciencia e Innovación, MCIN, (PCI2022-135018-2, RYC2021-031273-I, PID2021- 125273NB, RYC2019-028510-I, RYC2022-038164-I, RYC2020-030254-I); Narodowe Centrum Nauki, NCN, (UMO-2020/37/B/ST2/01043, UMO-2021/40/C/ST2/00187, UMO-2023/49/B/ST2/04085, UMO-2019/34/E/ST2/00393, 2021/42/E/ST2/00350, 2022/47/B/ST2/03059, UMO2022/47/O/ST2/00148); Ministero dell’Istruzione, dell’Università e della Ricerca, MIUR, (PRIN - 20223N7F8K - PNRR M4.C2.1.1); NDGF, (CC-IN2P3); Investissements d'Avenir Labex, (ANR-11-LABX-0012); The Slovenian Research and Innovation Agency, ARRS, (J1-3010); Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT, (CZ.02.01.01/00/22-008/0004632, PRIMUS/21/SCI/017); DNSRC, (IN2P3-CNRS); GenT Programmes Generalitat Valenciana, (CIDEGENT/2019/027); Knut och Alice Wallenbergs Stiftelse, (KAW 2018.0157, KAW 2018.0458, KAW 2019.0447, KAW 2022.0358); U.S. Department of Energy, USDOE, (ECA DE-AC02-76SF00515); European Research Council, ERC, (101089007, 948254); MUCCA, (CHIST-ERA-19-XAI-00); Norges Forskningsråd, (RCN-314472); Grantová Agentura České Republiky, GAČR, (GACR - 24-11373S); Ministry of Science and Technology of the People's Republic of China, MOST, (MOST-2023YFA1605700); National Natural Science Foundation of China, NSFC, (12275265, 12175119, NSFC12075060); European Regional Development Fund, ERDF, (IDIFEDER/2018/048); Agence Nationale de la Recherche, ANR, (ANR-20-CE31-0013, ANR-21-CE31-0013, ANR-22-EDIR-0002, ANR-21-CE31-0022); Vetenskapsrådet, VR, (VR 2023-03403, VR 2018-00482, 2023-04654, 2021-03651, VR 2022-04683, VR 2022-03845)en_US
dc.language.isoenen_US
dc.publisherInstitute of Physicsen_US
dc.relation.ispartofJournal of Instrumentationen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnalysis and statistical methodsen_US
dc.subjectPerformance of High Energy Physics Detectorsen_US
dc.subjectColliding beam acceleratorsen_US
dc.subjectElementary particle sourcesen_US
dc.subjectLinear acceleratorsen_US
dc.subjectPhotonsen_US
dc.subjectStatistical mechanicsen_US
dc.subjectAnalyze and statistical methoden_US
dc.subjectATLAS detectorsen_US
dc.subjectBeam axisen_US
dc.subjectHigh energy physics detectoren_US
dc.subjectMeasurements ofen_US
dc.subjectPerformanceen_US
dc.subjectPerformance of high energy physic detectoren_US
dc.subjectSystematic uncertaintiesen_US
dc.subjectTop quarksen_US
dc.subjectUncertaintyen_US
dc.subjectHadronsen_US
dc.titleAccuracy Versus Precision in Boosted Top Tagging With the Atlas Detectoren_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume19en_US
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-85203388592en_US
dc.institutionauthor-
dc.identifier.doi10.1088/1748-0221/19/08/P08018-
dc.authorscopusid26326745400-
dc.authorscopusid58475641900-
dc.authorscopusid35226946900-
dc.authorscopusid59090912500-
dc.authorscopusid57210132793-
dc.authorscopusid58179773000-
dc.authorscopusid56536227400-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

38
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.