Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1180
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzyer, Tansel-
dc.contributor.authorÜçer, Serkan-
dc.contributor.authorİyidoğan, Taylan-
dc.date.accessioned2019-06-26T07:40:36Z
dc.date.available2019-06-26T07:40:36Z
dc.date.issued2015
dc.identifier.citationÁ-zyer, T., Ucer, S., & Iyidogan, T. (2015). Employing social network analysis for disease biomarker detection. International journal of data mining and bioinformatics, 12(3), 343-362.en_US
dc.identifier.issn1748-5673
dc.identifier.urihttp://www.inderscience.com/offer.php?id=69661-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1180-
dc.description.abstractDetection of disease biomarkers in general and cancer biomarkers in particular is an important task which has received considerable attention in the area of in silico genomic experiments. We describe a new approach for detecting cancer biomarkers based on genomic microarray data; it is characterised by employing Social Network Analysis (SNA) techniques. Through social interaction perspective, we can have genes as actors in a social network, where similarities between genes can be described as connections between these actors. The correct determination of biomarkers out of huge genomic data dramatically decreases the number of features. It is also possible to achieve the same or better classification performance compared to using the whole data. The minimum number of biomarkers can be researched further biologically to reduce the numerous time-consuming in vitro experiments. Results of the conducted experiments with selected biomarkers are promising and efficient.en_US
dc.language.isoenen_US
dc.publisherInderscience Enterprises Ltd.en_US
dc.relation.ispartofinternational Journal Of Data Mining And Bioinformaticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSocial Networksen_US
dc.subjectSnaen_US
dc.subjectSocial Network Analysisen_US
dc.subjectCancer Biomarkersen_US
dc.subjectGenomic Dataen_US
dc.subjectFeature Eliminationen_US
dc.titleEmploying social network analysis for disease biomarker detectionen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume12
dc.identifier.issue3
dc.identifier.startpage343
dc.identifier.endpage362
dc.identifier.wosWOS:000359008800006en_US
dc.identifier.scopus2-s2.0-84930458443en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.pmid26510291en_US
dc.identifier.doi10.1504/IJDMB.2015.069661-
dc.authorscopusid8914139000-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 2, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 2, 2024

Page view(s)

130
checked on Nov 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.