Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/1180
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Özyer, Tansel | - |
dc.contributor.author | Üçer, Serkan | - |
dc.contributor.author | İyidoğan, Taylan | - |
dc.date.accessioned | 2019-06-26T07:40:36Z | |
dc.date.available | 2019-06-26T07:40:36Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Á-zyer, T., Ucer, S., & Iyidogan, T. (2015). Employing social network analysis for disease biomarker detection. International journal of data mining and bioinformatics, 12(3), 343-362. | en_US |
dc.identifier.issn | 1748-5673 | |
dc.identifier.uri | http://www.inderscience.com/offer.php?id=69661 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/1180 | - |
dc.description.abstract | Detection of disease biomarkers in general and cancer biomarkers in particular is an important task which has received considerable attention in the area of in silico genomic experiments. We describe a new approach for detecting cancer biomarkers based on genomic microarray data; it is characterised by employing Social Network Analysis (SNA) techniques. Through social interaction perspective, we can have genes as actors in a social network, where similarities between genes can be described as connections between these actors. The correct determination of biomarkers out of huge genomic data dramatically decreases the number of features. It is also possible to achieve the same or better classification performance compared to using the whole data. The minimum number of biomarkers can be researched further biologically to reduce the numerous time-consuming in vitro experiments. Results of the conducted experiments with selected biomarkers are promising and efficient. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Inderscience Enterprises Ltd. | en_US |
dc.relation.ispartof | international Journal Of Data Mining And Bioinformatics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Social Networks | en_US |
dc.subject | Sna | en_US |
dc.subject | Social Network Analysis | en_US |
dc.subject | Cancer Biomarkers | en_US |
dc.subject | Genomic Data | en_US |
dc.subject | Feature Elimination | en_US |
dc.title | Employing social network analysis for disease biomarker detection | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 12 | |
dc.identifier.issue | 3 | |
dc.identifier.startpage | 343 | |
dc.identifier.endpage | 362 | |
dc.identifier.wos | WOS:000359008800006 | en_US |
dc.identifier.scopus | 2-s2.0-84930458443 | en_US |
dc.institutionauthor | Özyer, Tansel | - |
dc.identifier.pmid | 26510291 | en_US |
dc.identifier.doi | 10.1504/IJDMB.2015.069661 | - |
dc.authorscopusid | 8914139000 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
3
checked on Nov 2, 2024
WEB OF SCIENCETM
Citations
6
checked on Nov 2, 2024
Page view(s)
130
checked on Nov 4, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.