Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11858
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüven M.-
dc.date.accessioned2024-11-10T14:56:03Z-
dc.date.available2024-11-10T14:56:03Z-
dc.date.issued2024-
dc.identifier.issn2149-9144-
dc.identifier.urihttps://doi.org/10.22399/ijcesen.460-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11858-
dc.description.abstractDynamic malware analysis plays a pivotal role in modern cybersecurity, offering insights into malware behavior through dynamic execution and network traffic analysis. In this study, we present a comprehensive approach to dynamic malware analysis using a sandbox environment and network traffic logs. Our methodology involves the extraction of relevant features from network traffic captured in pcap files. We conducted experiments using a virtualized Oracle VirtualBox environment, where benign and malicious software samples were executed within a Windows virtual machine controlled by Python scripts. For network emulation, we utilized tools from the REMnux distribution, including InetSim and FakeDNS, to simulate realistic network interactions during malware execution. The collected pcap data underwent preprocessing and feature extraction to capture essential behavioral patterns and network indicators. Machine learning and artificial intelligence models were developed to classify malware based on these extracted features. Our findings underscore the efficacy of dynamic analysis coupled with machine learning in detecting and classifying malware variants based on their network behavior. This research contributes to advancing techniques for real-time threat detection and response in cybersecurity, emphasizing the importance of dynamic malware analysis in mitigating evolving cyber threats. © IJCESEN.en_US
dc.language.isoenen_US
dc.publisherProf.Dr. İskender AKKURTen_US
dc.relation.ispartofInternational Journal of Computational and Experimental Science and Engineeringen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectCyber Securityen_US
dc.subjectMachine Learningen_US
dc.subjectMalware Analysisen_US
dc.subjectSandboxen_US
dc.titleDynamic Malware Analysis Using a Sandbox Environment, Network Traffic Logs, and Artificial Intelligenceen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume10en_US
dc.identifier.issue3en_US
dc.identifier.startpage480en_US
dc.identifier.endpage490en_US
dc.identifier.scopus2-s2.0-85205558963en_US
dc.institutionauthorGüven M.-
dc.identifier.doi10.22399/ijcesen.460-
dc.authorscopusid56343141800-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Dec 21, 2024

Page view(s)

24
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.