Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11866
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDemir O.T.-
dc.contributor.authorKosasih A.-
dc.contributor.authorBjornson E.-
dc.date.accessioned2024-11-10T14:56:04Z-
dc.date.available2024-11-10T14:56:04Z-
dc.date.issued2024-
dc.identifier.isbn979-835039318-7-
dc.identifier.issn2325-3789-
dc.identifier.urihttps://doi.org/10.1109/SPAWC60668.2024.10694490-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11866-
dc.descriptionHuaweien_US
dc.description25th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2024 -- 10 September 2024 through 13 September 2024 -- Lucca -- 203212en_US
dc.description.abstractExtremely large aperture arrays (ELAAs) can offer massive spatial multiplexing gains in the radiative near-field region in beyond 5G systems. While near-field channel modeling for uniform linear arrays has been extensively explored in the literature, uniform planar arrays - despite their advantageous form factor - have been somewhat neglected due to their more complex nature. Spatial correlation is crucial for non-line-of-sight channel modeling. Unlike far-field scenarios, the spatial correlation properties of near-field channels have not been thoroughly investigated. In this paper, we start from the fundamentals and develop a near-field spatial correlation model for arbitrary spatial scattering functions. Furthermore, we derive the lower-dimensional subspace where the channel vectors can exist. It is based on prior knowledge of the three-dimensional coverage region where scattering clusters exists and we derive a tractable one-dimensional integral expression. This subspace is subsequently employed in the reduced-subspace least squares (RSLS) estimation method for near-field channels, thereby enhancing performance over the traditional least squares estimator without the need for having full spatial correlation matrix knowledge. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWCen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectExtremely large-scale MIMOen_US
dc.subjectnear-field channelsen_US
dc.subjectreduced-subspace least-square estimatoren_US
dc.subjectspatial correlationen_US
dc.subjectChannel estimationen_US
dc.subjectCommunication channels (information theory)en_US
dc.subjectImage segmentationen_US
dc.subjectLeast squares approximationsen_US
dc.subjectChannel modellingen_US
dc.subjectExtremely large-scale MIMOen_US
dc.subjectLarge-scalesen_US
dc.subjectLeast-square estimatorsen_US
dc.subjectLS-estimationen_US
dc.subjectNear Field Channelen_US
dc.subjectPlanar arraysen_US
dc.subjectReduced-subspace least-square estimatoren_US
dc.subjectSpatial correlation modelsen_US
dc.subjectSpatial correlationsen_US
dc.subject5G mobile communication systemsen_US
dc.titleSpatial Correlation Modeling and Rs-Ls Estimation of Near-Field Channels With Uniform Planar Arraysen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.startpage236en_US
dc.identifier.endpage240en_US
dc.identifier.scopus2-s2.0-85207062356en_US
dc.institutionauthor-
dc.identifier.doi10.1109/SPAWC60668.2024.10694490-
dc.authorscopusid55807906700-
dc.authorscopusid57202575500-
dc.authorscopusid24478602800-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

14
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.