Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12004
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNassehi, F.-
dc.contributor.authorKırıcı, E.-
dc.contributor.authorBudak, A.-
dc.contributor.authorAşcı, R.D.-
dc.contributor.authorEroğul, O.-
dc.date.accessioned2025-01-10T21:00:47Z-
dc.date.available2025-01-10T21:00:47Z-
dc.date.issued2024-
dc.identifier.isbn979-833152981-9-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO63488.2024.10755380-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12004-
dc.description.abstractSocial anxiety disorder (SAD) involves an intense fear of social interactions, leading to distress and impaired daily functioning. This study aims to develop a wearable technology to predict and mitigate anxiety attacks in SAD patients using Photoplethysmogram (PPG) and Electrocardiogram (ECG) signals. The system analyzes data from 135 participants, using the Liebowitz scale and State-Trait Anxiety Inventory to select 30 individuals for detailed analysis. Key features from ECG and PPG signals were input into a Naive Bayes algorithm, achieving an 84.24% accuracy in predicting anxiety states. The system also provides sound and vibration stimuli to help calm patients, potentially improving their quality of life. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2024 - Medical Technologies Congress, Proceedings -- 2024 Medical Technologies Congress, TIPTEKNO 2024 -- 10 October 2024 through 12 October 2024 -- Mugla -- 204315en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnxietyen_US
dc.subjectElectrocardiogramen_US
dc.subjectMachine Learningen_US
dc.subjectPhotoplethysmographyen_US
dc.subjectPredictionen_US
dc.titleNon-Eeg Method To Predict a Psychiatric Disorder and Proposed Preventive Methoden_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.scopus2-s2.0-85212692082-
dc.identifier.doi10.1109/TIPTEKNO63488.2024.10755380-
dc.authorscopusid57210944631-
dc.authorscopusid59481884500-
dc.authorscopusid59482188400-
dc.authorscopusid59482292600-
dc.authorscopusid56247443100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.