Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12066
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSakin, Ahmet Oguz-
dc.contributor.authorDemirtas, Ali Murat-
dc.contributor.authorKurt, Hamza-
dc.contributor.authorUnlu, Mehmet-
dc.date.accessioned2025-02-10T18:28:45Z-
dc.date.available2025-02-10T18:28:45Z-
dc.date.issued2025-
dc.identifier.issn2192-8606-
dc.identifier.issn2192-8614-
dc.identifier.urihttps://doi.org/10.1515/nanoph-2024-0567-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12066-
dc.description.abstractUltrafast pulses, particularly those with durations under 100 fs, are crucial in achieving unprecedented precision and control in light-matter interactions. However, conventional on-chip photonic platforms are not inherently designed for ultrafast time-domain operations, posing a significant challenge in achieving essential parameters such as high peak power and high temporal resolution. This challenge is particularly pronounced when propagating through integrated waveguides with nonlinear and high-dispersion profiles. In addressing this challenge, we present a design methodology for ultrafast pulse propagation in dispersive integrated waveguides, specifically focused on enhancing the time-domain characteristics of one-dimensional grating waveguides (1DGWs). The proposed methodology aims to determine the optimal structural parameters for achieving maximum peak power, enhanced temporal resolution, and extended pulse storage duration during ultrafast pulse propagation. To validate this approach, we design and fabricate two specialized 1DGWs on a silicon-on-insulator (SOI) platform. A digital finite impulse response (FIR) model, trained with both transmission and phase measurement data, is employed to obtain ultrafast time-domain characteristics, enabling easy extraction of these results. Our approach achieves a 2.8-fold increase in peak power and reduces pulse broadening by 24 %, resulting in a smaller sacrifice in temporal resolution. These results can possibly pave the way for advanced light-matter interactions within dispersive integrated waveguides.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu; Natural Sciences and Engineering Research Council of Canada (NSERC); Silicon Electronic-Photonic Integrated Circuits (SiEPIC) programen_US
dc.description.sponsorshipWe acknowledge the edX UBCx Silicon Photonics Design, Fabrication, and Data Analysis course supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Silicon Electronic-Photonic Integrated Circuits (SiEPIC) program.en_US
dc.language.isoenen_US
dc.publisherWalter de Gruyter Gmbhen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectUltrafast Photonicsen_US
dc.subjectSilicon Photonicsen_US
dc.subjectDispersive Integrated Waveguidesen_US
dc.subjectTime-Domainen_US
dc.titleUltrafast Pulse Propagation Time-Domain Dynamics in Dispersive One-Dimensional Photonic Waveguidesen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.wosWOS:001407126300001-
dc.identifier.doi10.1515/nanoph-2024-0567-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

12
checked on Feb 17, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.