Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12405
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDemir, O.T.-
dc.contributor.authorBjörnson, E.-
dc.date.accessioned2025-04-11T19:51:30Z-
dc.date.available2025-04-11T19:51:30Z-
dc.date.issued2024-
dc.identifier.isbn9798350351255-
dc.identifier.issn2334-0983-
dc.identifier.urihttps://doi.org/10.1109/GLOBECOM52923.2024.10901409-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12405-
dc.description.abstractA large-scale MIMO (multiple-input multiple-output) system offers significant advantages in wireless communication, including potential spatial multiplexing and beamforming capabilities. However, channel estimation becomes challenging with multiple antennas at both the transmitter and receiver ends. The minimum mean-squared error (MMSE) estimator, for instance, requires a spatial correlation matrix whose dimensions scale with the square of the product of the number of antennas on the transmitter and receiver sides. This scaling presents a substantial challenge, particularly as antenna counts increase in line with current technological trends. Traditional MIMO literature offers alternative channel estimators that mitigate the need to fully acquire the spatial correlation matrix. In this paper, we revisit point-to-point MIMO channel estimation and introduce a reduced-subspace least squares (RS-LS) channel estimator designed to eliminate physically impossible channel dimensions inherent in uniform planar arrays. Additionally, we propose a cluster-aware RS-LS estimator that leverages both reduced and cluster-specific subspace properties, significantly enhancing performance over the conventional RS-LS approach. Notably, both proposed methods obviate the need for fully/partial knowledge of the spatial correlation matrix. © 2024 IEEE.en_US
dc.description.sponsorshipStiftelsen för Strategisk Forskning, SSF; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (FFL18-0277); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAKen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - IEEE Global Communications Conference, GLOBECOM -- 2024 IEEE Global Communications Conference, GLOBECOM 2024 -- 8 December 2024 through 12 December 2024 -- Cape Town -- 207545en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectChannel Estimationen_US
dc.subjectPilot Designen_US
dc.subjectPoint-To-Point Mimoen_US
dc.subjectReduced Pilot Lengthen_US
dc.subjectReduced-Subspace Least Squaresen_US
dc.titlePoint-To Mimo Channel Estimation by Exploiting Array Geometry and Clustered Multipath Propagationen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.startpage1689en_US
dc.identifier.endpage1694en_US
dc.identifier.scopus2-s2.0-105000824128-
dc.identifier.doi10.1109/GLOBECOM52923.2024.10901409-
dc.authorscopusid55807906700-
dc.authorscopusid24478602800-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

16
checked on May 5, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.