Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12426
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeleş, K.E.-
dc.contributor.authorKutlu, M.-
dc.date.accessioned2025-04-11T19:52:24Z-
dc.date.available2025-04-11T19:52:24Z-
dc.date.issued2025-
dc.identifier.isbn9798891762053-
dc.identifier.issn2951-2093-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12426-
dc.description.abstractThis paper details our methods for addressing Task 1 of the GenAI Content Detection shared tasks, which focus on distinguishing AI-generated text from human-written content. The task comprises two subtasks: Subtask A, centered on English-only datasets, and Subtask B, which extends the challenge to multilingual data. Our approach uses a fine-tuned XLM-RoBERTa model for classification, complemented by features including perplexity and TF-IDF. While perplexity is commonly regarded as a useful indicator for identifying machine-generated text, our findings suggest its limitations in multi-model and multilingual contexts. Our approach ranked 6th in Subtask A, but a submission issue left our Subtask B unranked, where it would have placed 23rd. © 2025 International Conference on Computational Linguistics.en_US
dc.language.isoenen_US
dc.publisherAssociation for Computational Linguistics (ACL)en_US
dc.relation.ispartofProceedings - International Conference on Computational Linguistics, COLING -- 1st Workshop on GenAI Content Detection, GenAIDetect 2025 -- 19 January 2025 -- Abu Dhabi -- 207333en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleTurquaz at Genai Detection Task 1: Dr. Perplexity Or: How I Learned To Stop Worrying and Love the Finetuningen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.startpage225en_US
dc.identifier.endpage229en_US
dc.identifier.scopus2-s2.0-105000198483-
dc.authorscopusid58770155500-
dc.authorscopusid35299304300-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

70
checked on Jul 7, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.