Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12463
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOruc, Omer-
dc.contributor.authorAkin, Omer-
dc.date.accessioned2025-05-10T19:33:07Z-
dc.date.available2025-05-10T19:33:07Z-
dc.date.issued2025-
dc.identifier.issn1660-5446-
dc.identifier.issn1660-5454-
dc.identifier.urihttps://doi.org/10.1007/s00009-025-02827-0-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12463-
dc.description.abstractWe developed an accurate and reliable numerical method for a nonlinear partial differential equation called as Gardner equation which describes many important wave phenomena. The proposed numerical method employs a high-order compact difference scheme for space discretization which gives rise to a large system of ordinary differential equations for the Gardner equation. The obtained system of ordinary differential is usually stiff so to acquire reasonable results, time step size of time integrator should be very small. To loosen the restriction on the time step size, a splitting technique is used to split the equation into stiff and non-stiff parts. Then a second-order Rosenbrock method is employed for stiff part and a third-order strong stability-preserving Runge-Kutta method is used for non-stiff parts. To judge performance of the proposed method, a sequence of numerical simulations is performed, and obtained results are compared with exact solution and with existing numerical methods in the literature such as finite element and collocation methods. The numerical simulations and comparisons show accuracy and reliability of the proposed method.en_US
dc.description.sponsorshipDicle Universityen_US
dc.description.sponsorshipWe are grateful to anonymous reviewers for their valuable time and suggestions for improving our manuscript.en_US
dc.language.isoenen_US
dc.publisherSpringer Basel Agen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGardner Equationen_US
dc.subjectCompact Difference Schemeen_US
dc.subjectRosenbrock Methoden_US
dc.subjectTime Splittingen_US
dc.subjectNumerical Solutionen_US
dc.titleOperator Splitting With Compact Differences and Second-Order Two-Stage Rosenbrock Method for the Gardner Equationen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume22en_US
dc.identifier.issue3en_US
dc.identifier.wosWOS:001455923900002-
dc.identifier.scopus2-s2.0-105001439447-
dc.identifier.doi10.1007/s00009-025-02827-0-
dc.authorwosidAkın, Ömer/X-3464-2018-
dc.authorscopusid55257295400-
dc.authorscopusid7005769812-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.