Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/12486
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Atas, Furkan | - |
dc.contributor.author | Akgun, Mehmet Burak | - |
dc.date.accessioned | 2025-05-10T19:34:54Z | - |
dc.date.available | 2025-05-10T19:34:54Z | - |
dc.date.issued | 2025 | - |
dc.identifier.isbn | 9783031824371 | - |
dc.identifier.isbn | 9783031824357 | - |
dc.identifier.isbn | 9783031824340 | - |
dc.identifier.issn | 1860-949X | - |
dc.identifier.issn | 1860-9503 | - |
dc.identifier.uri | https://doi.org/10.1007/978-3-031-82435-7_33 | - |
dc.description.abstract | Graphs sub-structures have strong influence on the characteristics of real-world complex networks. Moreover, graph generation algorithms must capture and replicate these characteristics to remain representative of their real-world counterparts. The ever-increasing size of data collected from observed networks introduces another layer of complexity-scalability constraints- to the graph generation methods which already have multiple objective functions to satisfy. This paper introduces a novel distributed graph generation methodology that employs vertex partitioning to distribute the graph across multiple execution units. By design, algorithm faithfully replicates the exact Joint Degree Matrix(JDM) characteristics of the original graph. We conducted an extensive profiling study of the algorithm to analyze the effect of execution unit count and partition count on its runtime performance. The results demonstrate that, with just a few compute servers, the algorithm can efficiently scale to handle hundreds of millions of vertices within a reasonable time frame. | en_US |
dc.description.sponsorship | Saleh A. Kamel Graduate Fellowship at TOBB ETU | en_US |
dc.description.sponsorship | This work was supported in part by a Saleh A. Kamel Graduate Fellowship at TOBB ETU. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer international Publishing Ag | en_US |
dc.relation.ispartof | 13th International Conference on Complex Networks and their Applications-COMPLEX NETWORKS-Annual -- FEB 16-20, 2024 -- San Francisco, CA | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Jdm | en_US |
dc.subject | Distributed Computing | en_US |
dc.subject | Graph Generation | en_US |
dc.title | Exploiting Vertex-Cut Partitioning in Distributed Graph Generation | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | Studies in Computational Intelligence | - |
dc.department | TOBB University of Economics and Technology | en_US |
dc.identifier.volume | 1189 | en_US |
dc.identifier.startpage | 406 | en_US |
dc.identifier.endpage | 417 | en_US |
dc.identifier.wos | WOS:001480992500033 | - |
dc.identifier.scopus | 2-s2.0-105002005466 | - |
dc.identifier.doi | 10.1007/978-3-031-82435-7_33 | - |
dc.authorwosid | Akgun, Mehmet Burak/Afq-4327-2022 | - |
dc.authorscopusid | 59727067700 | - |
dc.authorscopusid | 36936068600 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.identifier.wosquality | N/A | - |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.