Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12486
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtas, F.-
dc.contributor.authorAkgun, M.B.-
dc.date.accessioned2025-05-10T19:34:54Z-
dc.date.available2025-05-10T19:34:54Z-
dc.date.issued2025-
dc.identifier.isbn9783031824340-
dc.identifier.issn1860-949X-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-82435-7_33-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12486-
dc.description.abstractGraphs sub-structures have strong influence on the characteristics of real-world complex networks. Moreover, graph generation algorithms must capture and replicate these characteristics to remain representative of their real-world counterparts. The ever-increasing size of data collected from observed networks introduces another layer of complexity -scalability constraints- to the graph generation methods which already have multiple objective functions to satisfy. This paper introduces a novel distributed graph generation methodology that employs vertex partitioning to distribute the graph across multiple execution units. By design, algorithm faithfully replicates the exact Joint Degree Matrix(JDM) characteristics of the original graph. We conducted an extensive profiling study of the algorithm to analyze the effect of execution unit count and partition count on its runtime performance. The results demonstrate that, with just a few compute servers, the algorithm can efficiently scale to handle hundreds of millions of vertices within a reasonable time frame. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofStudies in Computational Intelligence -- 13th International Conference on Complex Networks and their Applications, COMPLEX NETWORKS 2024 -- 10 December 2024 through 12 December 2024 -- Istanbul -- 329179en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDistributed Computingen_US
dc.subjectGraph Generationen_US
dc.subjectJdmen_US
dc.titleExploiting Vertex-Cut Partitioning in Distributed Graph Generationen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume1189 SCIen_US
dc.identifier.startpage406en_US
dc.identifier.endpage417en_US
dc.identifier.scopus2-s2.0-105002005466-
dc.identifier.doi10.1007/978-3-031-82435-7_33-
dc.authorscopusid59727067700-
dc.authorscopusid36936068600-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityN/A-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.