Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12572
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAad, G.-
dc.contributor.authorAakvaag, E.-
dc.contributor.authorAbbott, B.-
dc.contributor.authorAbdelhameed, S.-
dc.contributor.authorAbeling, K.-
dc.contributor.authorAbicht, N.J.-
dc.contributor.authorJia, Z.-
dc.date.accessioned2025-07-10T19:48:08Z-
dc.date.available2025-07-10T19:48:08Z-
dc.date.issued2025-
dc.identifier.issn0034-4885-
dc.identifier.urihttps://doi.org/10.1088/1361-6633/add370-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12572-
dc.description.abstractNeural simulation-based inference (NSBI) is a powerful class of machine-learning-based methods for statistical inference that naturally handles high-dimensional parameter estimation without the need to bin data into low-dimensional summary histograms. Such methods are promising for a range of measurements, including at the Large Hadron Collider, where no single observable may be optimal to scan over the entire theoretical phase space under consideration, or where binning data into histograms could result in a loss of sensitivity. This work develops a NSBI framework for statistical inference, using neural networks to estimate probability density ratios, which enables the application to a full-scale analysis. It incorporates a large number of systematic uncertainties, quantifies the uncertainty due to the finite number of events in training samples, develops a method to construct confidence intervals, and demonstrates a series of intermediate diagnostic checks that can be performed to validate the robustness of the method. As an example, the power and feasibility of the method are assessed on simulated data for a simplified version of an off-shell Higgs boson couplings measurement in the four-lepton final states. This approach represents an extension to the standard statistical methodology used by the experiments at the Large Hadron Collider, and can benefit many physics analyses. © 2025 The Author(s). Published by IOP Publishing Ltd.en_US
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades, MCIU; Agencia Nacional de Investigación y Desarrollo; BSF-NSF; Australian Research Council, ARC; Israel Academy of Sciences and Humanities; DRAC; CERN DOCT; La Caixa Banking Foundation; Centre National pour la Recherche Scientifique et Technique, CNRST; NAWA; Center for African Studies, CAS; Fundação para a Ciência e a Tecnologia, FCT; European Union, Future Artificial Intelligence Research; European Organization for Nuclear Research; Polish National Science Centre; Georgia Health Initiative, HGF; Center for Advancing Research Impact in Society, ARIS; National Science Foundation, NSF; Baden-Württemberg Stiftung; Science and Technology Facilities Council, STFC; Horizon 2020, ICSC-NextGenerationEU; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO; Ministry of Science and Innovation; Istituto Nazionale di Fisica Nucleare; Ministry of Science and Higher Education; ICHEP; Japan Society for the Promotion of Science; MVZI; PROMETEO; Spine Education and Research Institute, SERI; IDUB AGH; Ministry of Education Youth and Sports; Neubauer Family Foundation; Bundesministerium für Wissenschaft, Forschung und Wirtschaft, BMWFW; Austrian Science Fund, FFWF; BCKDF; Yerevan Physics Institute; ERDF; Agencia Nacional de Investigación y Desarrollo, ANID; Bundesministerium für Bildung und Forschung, BMBF; Canada Foundation for Innovation, CFI; Danmarks Grundforskningsfond, DNRF; Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq; Göran Gustafssons Stiftelse; Generalitat de Catalunya; U.S. Department of Energy, ENERGYGOV; EU-ESF; COST; CRC; Generalitat Valenciana; RGC; Duchenne Research Fund, DRF; Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP; PRIMUS; Agencia Estatal de Investigación, AEI; ICSC; ANR; Institutul de Fizică Atomică, IFA; Ministry of Science and Technology of the People's Republic of China, MOST; Natural Sciences and Engineering Research Council of Canada, NSERC; GenT Programmes Generalitat Valenciana, Spain; Marie Skłodowska-Curie Actions; National Science and Technology Council, NSTC; EU; MINERVA, Israel; Irish Rugby Football Union, IRFU; Cantons of Bern and Geneva; Defence Science Institute, DSI; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, SNSF; MSTDI; Horizon 2020 Framework Programme; MNE; Agencia Nacional de Promoción Científica y Tecnológica, ANPCyT; Marcus och Amalia Wallenbergs minnesfond, MMW; CERN-CZ; National Research Foundation, NRF; Ministerstwo Edukacji i Nauki, MNiSW; FAPERJ; European Research Council; CERN, CERN; Ministerstvo Školství, Mládeže a Tělovýchovy, MSMT; European Union; National Research Council Canada, NRC; Multiple Sclerosis Scientific Research Foundation, MSSRF; DFG; AvH Foundation; Istituto Nazionale di Fisica Nucleare, INFN; CANARIE; Ministry of Education, Culture, Sports, Science and Technology, MEXT; UK Research and Innovation, UKRI; FAIR-NextGenerationEU, (PE00000013); DNSRC, (IN2P3-CNRS); Royal Society, (NIF-R1-231091); NCN, (UMO-2019/34/E/ST2/00393, UMO-2022/47/O/ST2/00148, H2020 MSCA 945339, UMO-2023/51/B/ST2/00920, UMO-2023/49/B/ST2/04085, 2021/42/E/ST2/00350, UMO-2020/37/B/ST2/01043, 2023/51/B/ST2/02507, UMO-2021/40/C/ST2/00187, 2022/47/B/ST2/03059); FORTE, (CZ.02.01.01/00/22_008/0004632, PRIMUS/21/SCI/017); Japan Society for the Promotion of Science, JSPS, (JP22KK0227, JP22H04944, JP23KK0245, JP22H01227); Japan Society for the Promotion of Science, JSPS; Research Council of Norway, (RCN-314472); MCIN, (PID2021-125273NB, RYC2019-028510-I, PCI2022-135018-2, RYC2021-031273-I, RYC2020-030254-I, RYC2022-038164-I); Chinese Ministry of Science and Technology, (MOST-2023YFA1609300, MOST-2023YFA1605700); H2020 European Research Council, (ERC—101002463); Swedish Research Council, (VR 2021-03651, VR 2023-03403, 2023-04654, VR 2022-03845, VR 2022-04683, VR 2018-00482); Leverhulme Trust, (RPG-2020-004); ERC, (948254, 101089007); National Natural Science Foundation of China, NNSFC, (12275265, NSFC-12075060); National Natural Science Foundation of China, NNSFC; Deutsche Forschungsgemeinschaft, (DFG—CR 312/5-2, DFG—469666862); Ministero dell’Università e della Ricerca, (PRIN—20223N7F8K—PNRR M4.C2.1.1); Czech Science Foundation, (GACR—24-11373S); National Natural Science Foundation of China, (NSFC—12175119); FONDECYT, (1240864, 1230987, 1230812); Carl Trygger Foundation, (CTS 22:2312); MUCCA, (CHIST-ERA-19-XAI-00); U.S. Department of Energy, (ECA DE-AC02-76SF00515); FEDER, (IDIFEDER/2018/048); Agence Nationale de la Recherche, (ANR-20-CE31-0013, ANR-21-CE31-0013, ANR-22-EDIR-0002, ANR-21-CE31-0022); Swiss National Science Foundation, (SNSF—PCEFP2_194658); Knut and Alice Wallenberg Foundation, (KAW 2018.0458, KAW 2019.0447, KAW 2022.0358); Polish National Agency for Academic Exchange, (PPN/PPO/2020/1/00002/U/00001); BARD, (101116429)en_US
dc.language.isoenen_US
dc.publisherInstitute of Physicsen_US
dc.relation.ispartofReports on Progress in Physicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFrequentist Statisticsen_US
dc.subjectLikelihood-Free Inferenceen_US
dc.subjectMachine Learningen_US
dc.subjectNeural Simulation-Based Inferenceen_US
dc.subjectParameter Inferenceen_US
dc.titleAn Implementation of Neural Simulation-Based Inference for Parameter Estimation in Atlasen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume88en_US
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-105007089483-
dc.identifier.doi10.1088/1361-6633/add370-
dc.authorscopusid26326745400-
dc.authorscopusid58475641900-
dc.authorscopusid35226946900-
dc.authorscopusid59090912500-
dc.authorscopusid57210132793-
dc.authorscopusid58179773000-
dc.authorscopusid58846722300-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.