Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12575
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeskin, M.Z.-
dc.contributor.authorYentur, A.-
dc.contributor.authorOzdur, I.-
dc.date.accessioned2025-07-10T19:48:09Z-
dc.date.available2025-07-10T19:48:09Z-
dc.date.issued2025-
dc.identifier.isbn9781510687530-
dc.identifier.issn0277-786X-
dc.identifier.urihttps://doi.org/10.1117/12.3053330-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12575-
dc.descriptionThe Society of Photo-Optical Instrumentation Engineers (SPIE)en_US
dc.description.abstractDistributed feedback (DFB) fiber lasers are increasingly employed in underwater acoustic sensing for both civil and military applications due to their compact size, ease of fabrication, and inherent resistance to water-induced degradation. These fiber lasers are fabricated by inscribing π-phase shifted fiber Bragg gratings (FBGs) forming a resonant cavity with FBGs serving as highly reflective mirrors on either side. The π-phase shift introduces a central resonance, making the cavity exceptionally sensitive to external influences. These external perturbations alter the effective refractive index and length of the fiber, consequently modulating the laser's emission wavelength and frequency. In this study, we implement an interrogator system based on a Michelson interferometer, utilizing the phase-generated carrier (PGC) technique to convert frequency deviations within the fiber laser, induced by underwater acoustic signals, into phase variations. A detailed characterization of both the DFB fiber laser and the interrogator system is provided, supported by experimental measurements. Key limiting factors such as laser frequency noise and system sensitivity are analyzed, with comparisons to existing literature. The designed system achieved a high dynamic range over 100 dB up to 5 kHz detection frequency, while minimizing system phase noise down below 5x10-5 rad/√Hz and frequency noise down under 25 Hz/√Hz at 1 kHz. © 2025 SPIE. All rights reserved.en_US
dc.description.sponsorshipBilkent Üniversitesien_US
dc.language.isoenen_US
dc.publisherSPIEen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineering -- Ocean Sensing and Monitoring XVII 2025 -- 16 April 2025 through 18 April 2025 -- Orlando -- 209210en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAcoustic Sensingen_US
dc.subjectFiber Laseren_US
dc.subjectHydrophoneen_US
dc.titleDFB Fiber Laser Based Underwater Acoustic Sensingen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume13482en_US
dc.identifier.scopus2-s2.0-105007615582-
dc.identifier.doi10.1117/12.3053330-
dc.authorscopusid57912824900-
dc.authorscopusid59035039800-
dc.authorscopusid16029503000-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.grantfulltextnone-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.