Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/12577
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, X. | - |
dc.contributor.author | Behdad, Z. | - |
dc.contributor.author | Topal, O.A. | - |
dc.contributor.author | Demir, O.T. | - |
dc.contributor.author | Cavdar, C. | - |
dc.date.accessioned | 2025-07-10T19:48:10Z | - |
dc.date.available | 2025-07-10T19:48:10Z | - |
dc.date.issued | 2025 | - |
dc.identifier.isbn | 9798350368369 | - |
dc.identifier.issn | 1525-3511 | - |
dc.identifier.uri | https://doi.org/10.1109/WCNC61545.2025.10978722 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/12577 | - |
dc.description.abstract | Integrated sensing and communication (ISAC) boosts network efficiency by using existing resources for diverse sensing applications. In this work, we propose a cell-free massive MIMO (multiple-input multiple-output)-ISAC framework to detect unauthorized drones while simultaneously ensuring communication requirements. We develop a detector to identify passive aerial targets by analyzing signals from distributed access points (APs). In addition to the precision of the sensing, timeliness of the sensing information is also crucial due to the risk of drones leaving the area before the sensing procedure is finished. We introduce the age of sensing (AoS) and sensing coverage as our sensing performance metrics and propose a joint sensing blocklength and power optimization algorithm to minimize AoS and maximize sensing coverage while meeting communication requirements. Moreover, we propose an adaptive weight selection algorithm based on concave-convex procedure to balance the inherent tradeoff between AoS and sensing coverage. Our numerical results show that increasing the communication requirements would significantly reduce both the sensing coverage and the timeliness of the sensing. Furthermore, the proposed adaptive weight selection algorithm can provide high sensing coverage and reduce the AoS by 45% compared to the fixed weights, demonstrating efficient utilization of both power and sensing blocklength © 2025 IEEE. | en_US |
dc.description.sponsorship | Swedish Innovation Agency Funded; VINNOVA, VINNOVA, (2023-00572); VINNOVA, VINNOVA | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | IEEE Wireless Communications and Networking Conference, WCNC -- 2025 IEEE Wireless Communications and Networking Conference, WCNC 2025 -- 24 March 2025 through 27 March 2025 -- Milan -- 208731 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Age Of Sensing | en_US |
dc.subject | C-Ran | en_US |
dc.subject | Cell-Free Massive MIMO | en_US |
dc.subject | Integrated Sensing And Communication (ISAC) | en_US |
dc.subject | Multi-Static Sensing | en_US |
dc.subject | Power Allocation | en_US |
dc.title | Detecting Unauthorized Drones With Cell-Free Integrated Sensing and Communication | en_US |
dc.type | Conference Object | en_US |
dc.department | TOBB University of Economics and Technology | en_US |
dc.identifier.scopus | 2-s2.0-105006420688 | - |
dc.identifier.doi | 10.1109/WCNC61545.2025.10978722 | - |
dc.authorscopusid | 59544658200 | - |
dc.authorscopusid | 57201525432 | - |
dc.authorscopusid | 57190742811 | - |
dc.authorscopusid | 55807906700 | - |
dc.authorscopusid | 24178594900 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.