Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12578
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDuman, O.-
dc.date.accessioned2025-07-10T19:48:10Z-
dc.date.available2025-07-10T19:48:10Z-
dc.date.issued2026-
dc.identifier.issn0377-0427-
dc.identifier.urihttps://doi.org/10.1016/j.cam.2025.116864-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12578-
dc.description.abstractThis paper introduces a hybrid operator that combines Shepard operators with Lagrange polynomials, proving that the new operator exhibits superior approximation properties compared to the classical Shepard operator. In the linear case, our approach advances known results in the literature, providing a more effective framework for approximation. Building on this foundation, the method is also extended to nonlinear scenarios by employing max-product operations, demonstrating that the nonlinear operator achieves even better approximation characteristics than its linear counterpart. The theoretical findings are validated through numerical computations and graphical representations, strongly supporting the effectiveness of the hybrid operator in both linear and nonlinear contexts. © 2025en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInterpolationen_US
dc.subjectLagrange Polynomialen_US
dc.subjectMax-Product Operationsen_US
dc.subjectShepard Operatorsen_US
dc.titleImproved Approximation Via Hybrid Shepard–Lagrange Operators: Linear and Nonlinear Perspectivesen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume473en_US
dc.identifier.scopus2-s2.0-105008962749-
dc.institutionauthorDuman, O.-
dc.identifier.doi10.1016/j.cam.2025.116864-
dc.authorscopusid9943532600-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.