Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12587
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEkinci, Basak Gever-
dc.contributor.authorHanalioglu, Zulfiye-
dc.contributor.authorKhaniyev, Tahir-
dc.date.accessioned2025-08-10T17:35:00Z-
dc.date.available2025-08-10T17:35:00Z-
dc.date.issued2025-
dc.identifier.issn1387-5841-
dc.identifier.issn1573-7713-
dc.identifier.urihttps://doi.org/10.1007/s11009-025-10194-2-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12587-
dc.description.abstractThis study considers a non-linear Cram & eacute;r-Lundberg risk model and examines the adjustment coefficient (r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{(r)}$$\end{document} when the claims have gamma distribution. The linear models are not always adequate because an insurance company's premium income does not always increase linearly. Therefore, in this study, a more realistic non-linear Cram & eacute;r-Lundberg risk model is mathematically constructed. Then, the ruin probability of this non-linear risk model is studied when the premium function is in the form of square root function, i.e., p(t)=ct\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}\varvec{(t)}\varvec{=}\varvec{c}\varvec{\sqrt{t}}$$\end{document}. It leads to analyzing the adjustment coefficient (r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{(r)}$$\end{document}, as examining this coefficient is required for finding an upper bound while investigating the ruin probability. However, in general case, it is a challenging procedure to calculate the exact value of r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{r}$$\end{document} from an integral equation. Thus, in this study, the adjustment coefficient r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{r}$$\end{document} is explored by computational methods and a new approximate formula for the practical calculation of the adjustment coefficient is proposed. Moreover, an implementation of the obtained approximate formula, which investigates ruin probability, is included as an example at the end of the paper.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNon-Linear Cram & Eacuteen_US
dc.subjectR-Lundberg Risk Modelen_US
dc.subjectRuin Probabilityen_US
dc.subjectApproximate Formula for Adjustment Coefficienten_US
dc.subjectGamma Distributionen_US
dc.titleA Novel Approximation Method for Computing the Adjustment Coefficient of a Nonlinear Cramér-Lundberg Risk Model with Gamma Claimsen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume27en_US
dc.identifier.issue3en_US
dc.identifier.wosWOS:001534217400001-
dc.identifier.scopus2-s2.0-105011286842-
dc.identifier.doi10.1007/s11009-025-10194-2-
dc.authorscopusid60007834800-
dc.authorscopusid57188571645-
dc.authorscopusid7801652544-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ4-
dc.description.woscitationindexScience Citation Index Expanded-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.