Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1301
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTekeli, Bürkan-
dc.contributor.authorGürbüz, Sevgi Zübeyde-
dc.contributor.authorYüksel, Melda-
dc.date.accessioned2019-06-26T07:43:33Z
dc.date.available2019-06-26T07:43:33Z
dc.date.issued2016-05
dc.identifier.citationTekeli, B., Gurbuz, S. Z., & Yuksel, M. (2016). Information-theoretic feature selection for human micro-doppler signature classification. IEEE Transactions on Geoscience and Remote Sensing, 54(5), 2749-2762.en_US
dc.identifier.issn0196-2892
dc.identifier.urihttps://ieeexplore.ieee.org/document/7374670-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1301-
dc.description.abstractMicro-Doppler signatures can be used not only to recognize different targets, such as vehicles, helicopters, animals, and people, but also to classify varying activities, e.g., walking, running, creeping, and crawling. For this purpose, a plethora of features have been proposed in the literature; however, dozens of features are not required to achieve high classification performance. The topic of feature selection has been under addressed in micro-Doppler studies. Moreover, the optimal feature set is not static but varies under different operational conditions, such as signal-to-noise ratio (SNR), dwell time, and aspect angle. The mutual information of features relative to the classification problem at hand offers a measure for assessing the efficacy of features and thus sets a unique framework for feature selection. In this paper, information-theoretic (IT) feature selection techniques are used to identify essential features and minimize the total number of required features, while maximizing classification performance. It is seen that, although some features are consistently preferred, others are never selected. Results show that for SNRs over 10 dB and at least 1 s of data, this approach yields 96% correct classification when the target moves along the radar line-of-sight and over 65% correct classification for tangential motion.en_US
dc.description.sponsorshipThis work was supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project 113E105 and in part by the European Union Seventh Framework Programme under Project PIRG-GA-2012-268276.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Transactions On Geoscience And Remote Sensingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutomatic target recognition (ATR)en_US
dc.subjectclassificationen_US
dc.subjectfeature selectionen_US
dc.subjecthuman micro-Doppleren_US
dc.subjectradar signaturesen_US
dc.titleInformation-Theoretic Feature Selection for Human Micro-Doppler Signature Classificationen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume54
dc.identifier.issue5
dc.identifier.startpage2749
dc.identifier.endpage2762
dc.relation.tubitakScientific and Technological Research Council of Turkey (TUBITAK) [113E105]en_US
dc.relation.ecEuropean Union Seventh Framework Programme [PIRG-GA-2012-268276]en_US
dc.identifier.wosWOS:000374968500021en_US
dc.identifier.scopus2-s2.0-84970910114en_US
dc.institutionauthorYüksel Turgut, Ayşe Melda-
dc.identifier.doi10.1109/TGRS.2015.2505409-
dc.authorwosidM-5343-2014-
dc.authorscopusid7006176085-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

46
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

53
checked on Dec 21, 2024

Page view(s)

60
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.