Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1474
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZakerhaghighi, H.-
dc.contributor.authorAdibnazari, S.-
dc.contributor.authorGüler, Mehmet Ali-
dc.contributor.authorFaghidian, S. A.-
dc.date.accessioned2019-06-26T08:07:00Z
dc.date.available2019-06-26T08:07:00Z
dc.date.issued2017-10-
dc.identifier.citationZakerhaghighi, H., Adibnazari, S., Güler, M. A., & Faghidian, S. A. (2017). Two?dimensional analysis of the fully coupled rolling contact problem between a rigid cylinder and an orthotropic medium. ZAMM?Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 97(10), 1283-1304.en_US
dc.identifier.issn0044-2267-
dc.identifier.urihttps://doi.org/10.1002/zamm.201600281-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1474-
dc.description.abstractIn this paper, the fully-coupled rolling contact problem between a rigid cylinder and an orthotropic medium is investigated. The governing equations are developed analytically; then, a numerical method, the Gauss-Chebyshev method, is used to solve the coupled integral equations. The rolling contact problem is solved by assuming a central stick zone accompanied with two slip regions. The main purpose of this study is to obtain the surface stresses in the contact area and investigate the effect of material orthotropic properties such as shear parameter and stiffness ratio and also the coefficient of friction on these contact stresses. In addition, the subsurface stresses in the orthotropic medium are determined and a parametric study, was subsequently executed. The current paper shows that the orthotropic parameters and the coefficient of friction significantly influence the contact surface stresses and the distribution of the interior field stresses. By appropriately choosing the values of these parameters, the stresses will decrease; thus, the failure behavior of the orthotropic medium improves. (C) 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimen_US
dc.language.isoenen_US
dc.publisherWiley-V C H Verlag Gmbhen_US
dc.relation.ispartofZamm-Zeitschrift Fur Angewandte Mathematik Und Mechaniken_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSingular integral equationsen_US
dc.subjectrolling contacten_US
dc.subjectorthotropic mediumen_US
dc.subjectsticken_US
dc.subjectslip regionsen_US
dc.subjectcontact stressen_US
dc.subjectsubsurface stressen_US
dc.titleTwo-Dimensional Analysis of the Fully Coupled Rolling Contact Problem Between a Rigid Cylinder and an Orthotropic Mediumen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümüen_US
dc.identifier.volume97en_US
dc.identifier.issue10en_US
dc.identifier.startpage1283en_US
dc.identifier.endpage1304en_US
dc.authorid0000-0002-1159-556X-
dc.identifier.wosWOS:000412284700007-
dc.identifier.scopus2-s2.0-85019465868-
dc.institutionauthorGüler, Mehmet Ali-
dc.identifier.doi10.1002/zamm.201600281-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ1-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Mar 29, 2025

WEB OF SCIENCETM
Citations

2
checked on Mar 15, 2025

Page view(s)

114
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.