Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1515
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPaksoy, Akın-
dc.contributor.authorAradağ, Selin-
dc.date.accessioned2019-06-26T08:07:03Z
dc.date.available2019-06-26T08:07:03Z
dc.date.issued2015
dc.identifier.citationPaksoy, A., & Aradag, S. (2015). ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TIME-DEPENDENT BEHAVIOR FOR LID-DRIVEN CAVITY FLOWS. Isi Bilimi ve Teknigi Dergisi/Journal of Thermal Science & Technology, 35(2).en_US
dc.identifier.issn1300-3615
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/181217-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1515-
dc.description.abstractIn this study, computational fluid dynamics (CFD) analyses of the two-dimensional, time-dependent lid-driven cavity flows, for Reynolds numbers ranging from 100 to 10000, are performed by using an in-house developed CFD code. The unsteady behavior of the flow is triggered using a sinusoidal lid velocity profile. The flow structure is further investigated with the application of a reduced order modeling technique, Proper Orthogonal Decomposition (POD), and the structures present in the flow, are separated according to their frequency (energy) content. POD results show that when the stream function formation is used as a data ensemble, about 99% of the total energy content can be modeled by considering only the most energetic first four POD modes; whereas, this value remains at a range between 90 - 95% for the x-direction velocity data ensemble. What is more, an Artificial Neural Network (ANN) based approach is developed to predict mode amplitudes for flows with different Reynolds numbers. Once enough information is obtained with the help of CFD of few flow cases, the ANN integrated approach presented herein helps to predict what is happening in the flow for different flow cases without requiring further CFD simulations, which are not practical in real-time flow control applications.en_US
dc.description.sponsorshipThis research is financially supported by Turkish Academy of Sciences Distinguished Young Scientists Awards Programme. (TUBA-GEBIP).
dc.language.isoenen_US
dc.publisherTurkish Soc Thermal Sciences Technologyen_US
dc.relation.ispartofJournal Of Thermal Science And Technologyen_US
dc.relation.ispartofIsı Bilimi ve Tekniği Dergisien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputational Fluid Dynamicsen_US
dc.subjectTime-dependent behavioren_US
dc.subjectCavity flowen_US
dc.subjectProper Orthogonal Decompositionen_US
dc.subjectFlow controlen_US
dc.subjectArtificial Neural Networksen_US
dc.titleArtificial Neural Network Based Prediction of Time-Dependent Behavior for Lid-Driven Cavity Flowsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümütr_TR
dc.identifier.volume35
dc.identifier.issue2
dc.identifier.startpage1
dc.identifier.endpage18
dc.authorid0000-0002-2034-0008-
dc.identifier.wosWOS:000367758900001en_US
dc.identifier.scopus2-s2.0-84963568218en_US
dc.institutionauthorAradağ, Selin-
dc.authorwosidI-8876-2012-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.trdizinidTVRneE1qRTNOdz09-
dc.identifier.trdizinid181217en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Aug 31, 2024

Page view(s)

84
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.