Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1652
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAksoylu, Burak-
dc.contributor.authorÜnlü, Zuhal-
dc.date.accessioned2019-07-04T14:19:40Z
dc.date.available2019-07-04T14:19:40Z
dc.date.issued2014-03
dc.identifier.citationAksoylu, B., & Unlu, Z. (2014). Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces. SIAM Journal on Numerical Analysis, 52(2), 653-677.en_US
dc.identifier.issn0036-1429
dc.identifier.urihttps://doi.org/10.1137/13092407X-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1652-
dc.description.abstractWe study the conditioning of nonlocal integral operators with singular and integrable kernels in fractional Sobolev spaces. These operators are used, for instance, in peridynamics formulation and nonlocal diffusion. In one dimension (1D), we present sharp quantification of the extremal eigenvalues in all three parameters: size of nonlocality, mesh size, and regularity of the fractional Sobolev space. We accomplish sharpness both rigorously and numerically. For the minimal eigenvalue, we obtain sharpness analytically by using a nonlocal characterization of Sobolev spaces. We verify this estimate by exploiting the Toeplitz property of the stiffness matrix. However, the analytical approach fails to give sharp quantification of the maximal eigenvalue. Hence, in 1D, we take an algebraic approach by directly working with the stiffness matrix entries, which have complicated expressions due to all three parameters. We systematically characterize the nonzero entries and dramatically simplify their expressions by using convenient algebra. We establish the zero row sum property of the stiffness matrix and negativity of the off-diagonal entries. Eventually, we arrive at sharpness through the use of the Gerschgorin circle theorem.en_US
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematics Publicationsen_US
dc.relation.ispartofSIAM Journal on Numerical Analysisen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCondition numberen_US
dc.subject Nonlocal operatorsen_US
dc.subject Peridynamicsen_US
dc.subject Nonlocal diffusionen_US
dc.subject Toeplitz matrixen_US
dc.subject The Gerschgorin circle theoremen_US
dc.subject Preconditioningen_US
dc.titleConditioning analysis of nonlocal integral operators in fractional Sobolev spacesen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume52
dc.identifier.issue2
dc.identifier.startpage653
dc.identifier.endpage677
dc.relation.tubitakinfo:eu-repo/grantAgreement/TÜBİTAK/TBAG/112T240en_US
dc.relation.tubitakinfo:eu-repo/grantAgreement/TÜBİTAK/MAG/112M891en_US
dc.relation.ecEuropean Union Marie Curie Career Integration [293978]en_US
dc.authorid0000-0002-7244-3340-
dc.identifier.wosWOS:000335818000004en_US
dc.identifier.scopus2-s2.0-84902581457en_US
dc.institutionauthorAksoylu, Burak-
dc.identifier.doi10.1137/13092407X-
dc.authorwosidC-4948-2016-
dc.authorscopusid23979376500-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.relation.internationalNational Science Foundation DMS [1016190]en_US
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

29
checked on Nov 2, 2024

WEB OF SCIENCETM
Citations

30
checked on Nov 2, 2024

Page view(s)

36
checked on Nov 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.