Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1653
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKılıç, Emrah-
dc.contributor.authorÖmür, Neşe-
dc.date.accessioned2019-07-04T14:19:40Z-
dc.date.available2019-07-04T14:19:40Z-
dc.date.issued2013-11-
dc.identifier.citationKılıç, E., & Omür, N. (2014). Some weighted sums of products of Lucas sequences. Integers: Annual, 2013, 402.en_US
dc.identifier.urihttps://www.emis.de/journals/INTEGERS/papers/n27/n27.pdf-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1653-
dc.description.abstractIn this paper, we consider the weighted sums of products of Lucas sequences of the form (Formula Presented) where rn and sn are the terms of Lucas sequences {Un} and {Vn} for some positive integers t and m. By using generating function methods, we compute the weighted sums of products of Lucas sequences and show that these sums could be expressed via terms of the Lucas sequences.en_US
dc.language.isoenen_US
dc.publisherIntegersen_US
dc.relation.ispartofIntegersen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSome Weighted Sums of Products of Lucas Sequencesen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume13-
dc.identifier.issue27-
dc.identifier.startpage1-
dc.identifier.endpage9-
dc.identifier.scopus2-s2.0-84979161009en_US
dc.institutionauthorKılıç, Emrah-
dc.identifier.doi10.1515/9783110298161.402-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

88
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.