Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1665
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKılıç, Emrah-
dc.date.accessioned2019-07-04T14:19:41Z
dc.date.available2019-07-04T14:19:41Z
dc.date.issued2016-09
dc.identifier.citationKiliç, E. Some classes of alternating weighted binomial sums.en_US
dc.identifier.issn1221-8421
dc.identifier.urihttps://www.math.uaic.ro/~annalsmath/pdf-uri%20anale/F2-3(2016)/Kilic_Emrah.pdf-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1665-
dc.description.abstractIn this paper, we consider three classes of generalized alternating weighted binomial sums of the form where f (n, i, k, t) will be chosen as UktiVkn?k(t+2)i, UktiVkn?kti and UtkiV(k+1)tn?(k+2)ti. We use the Binet formula and the Newton binomial formula to prove the claimed results. Further we present some interesting examples of our results.en_US
dc.language.isoenen_US
dc.relation.ispartofScientific Annals of the Alexandru Ioan Cuza University – Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBinomial sumsen_US
dc.subjectBinary linear recurrencesen_US
dc.titleSome Classes of Alternating Weighted Binomial Sumsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume3
dc.identifier.issue2
dc.identifier.startpage835
dc.identifier.endpage843
dc.identifier.scopus2-s2.0-85013673621en_US
dc.institutionauthorKılıç, Emrah-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

92
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.