Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/1946
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sae-Bae, Napa | - |
dc.contributor.author | Sun, Xiaoxi | - |
dc.contributor.author | Sencar, Hüsrev Taha | - |
dc.contributor.author | Memon, Nasir D. | - |
dc.date.accessioned | 2019-07-10T14:42:41Z | |
dc.date.available | 2019-07-10T14:42:41Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Sae-Bae, N., Sun, X., Sencar, H. T., & Memon, N. D. (2014, October). Towards automatic detection of child pornography. In 2014 IEEE International Conference on Image Processing (ICIP)(pp. 5332-5336). IEEE. | en_US |
dc.identifier.isbn | 978-1-4799-5751-4 | |
dc.identifier.issn | 1522-4880 | |
dc.identifier.uri | https://ieeexplore.ieee.org/document/7026079 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/1946 | - |
dc.description.abstract | This paper presents a child pornographic image detection system that identifies human skin tones in digital images, extracts features to detect explicit images and performs facial image based age classification. The novelty of the technique relies on the use of a robust and very fast skin color filter and a new set of facial features for improved identification of child faces. Tests on a dataset containing explicit images taken under different illuminations and reflecting a diversity of human skin tones, show that explicit images can be differentiated from benign images with around 90% accuracy. Similarly, tests performed on adult and child facial images yielded an accuracy of 80% in detecting child faces. Test conducted on 105 images involving semi-naked children (with no sexual context) revealed that the system has true positive rates of 83% in detecting explicit-like images and 96.5% in detecting child faces. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2014 IEEE International Conference on Image Processing | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Image processing | en_US |
dc.subject | Statistical tests | en_US |
dc.subject | Age classification | en_US |
dc.subject | Automatic Detection | en_US |
dc.subject | Child pornographies | en_US |
dc.subject | Digital image | en_US |
dc.subject | Facial feature | en_US |
dc.subject | Image detection systems | en_US |
dc.subject | Skin color filter | en_US |
dc.subject | True positive rates | en_US |
dc.title | Towards Automatic Detection of Child Pornography | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 5332 | |
dc.identifier.endpage | 5336 | |
dc.authorid | 0000-0001-6910-6194 | - |
dc.identifier.wos | WOS:000370063605100 | en_US |
dc.identifier.scopus | 2-s2.0-84949928560 | en_US |
dc.institutionauthor | Sencar, Hüsrev Taha | - |
dc.identifier.doi | 10.1109/ICIP.2014.7026079 | - |
dc.authorscopusid | 8616233200 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | - | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
26
checked on Nov 2, 2024
WEB OF SCIENCETM
Citations
32
checked on Nov 2, 2024
Page view(s)
76
checked on Oct 28, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.