Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1968
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDemirci, Muhammed Fatih-
dc.contributor.authorKaçka, Serdar-
dc.date.accessioned2019-07-10T14:42:43Z
dc.date.available2019-07-10T14:42:43Z
dc.date.issued2016
dc.identifier.citationDemirci, M. F., & Kacka, S. (2016, February). Object recognition by distortion-free graph embedding and random forest. In 2016 IEEE Tenth International Conference on Semantic Computing (ICSC) (pp. 17-23). IEEE.en_US
dc.identifier.isbn978-1-5090-0662-5
dc.identifier.issn2325-6516
dc.identifier.urihttps://ieeexplore.ieee.org/document/7439300-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1968-
dc.description10th IEEE International Conference on Semantic Computing (ICSC) (2016 : Laguna Hills, CA)
dc.description.abstractError tolerant graph matching is required not only in many realistic object recognition scenarios, but also in different domains such as document analysis and mechanical drawings. This paper presents such a technique using a distortion-free graph embedding, reformulating the problem as that of finding error-tolerant point matching in the geometric space. The embedding works by finding the distance between every node pair. In order to properly perform the embedding for object recognition in which graph nodes represent image features and graph edges show the relations between the features, we first use a machine learning algorithm, Random Forest, which obtains similar sets of features from images taken from close view points. Given a set of such features, we then perform their consistent ordering based on the local histogram around each feature. The experiments present the improved performance of the overall algorithm over the previous error tolerant matching approaches and Bag-of-visual-words model (BoVW) for object recognition.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE International Conference on Semantic Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectImage retrievalen_US
dc.subjectObject recognitionen_US
dc.subjectShape contexten_US
dc.titleObject Recognition by Distortion-Free Graph Embedding and Random Foresten_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage17
dc.identifier.endpage23
dc.identifier.wosWOS:000382051400003en_US
dc.identifier.scopus2-s2.0-84968902176en_US
dc.institutionauthorDemirci, Muhammed Fatih-
dc.identifier.doi10.1109/ICSC.2016.46-
dc.authorscopusid14041575400-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 9, 2024

Page view(s)

62
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.