Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1978
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBilgin, Ahmet Tunç-
dc.contributor.authorKadıoğlu-Ürtiş, Esra-
dc.date.accessioned2019-07-10T14:42:43Z
dc.date.available2019-07-10T14:42:43Z
dc.date.issued2015
dc.identifier.citationBilgin, A. T., & Kadioglu-Urtis, E. (2015, July). An approach to multi-agent pursuit evasion games using reinforcement learning. In 2015 International Conference on Advanced Robotics (ICAR)(pp. 164-169). IEEE.en_US
dc.identifier.isbn978-1-4673-7509-2
dc.identifier.urihttps://ieeexplore.ieee.org/document/7251450-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1978-
dc.description17th International Conference on Advanced Robotics (2015 : Istanbul; Turkey)
dc.description.abstractThe game of pursuit-evasion has always been a popular research subject in the field of robotics. Reinforcement learning, which employs an agent's interaction with the environment, is a method widely used in pursuit-evasion domain. In this paper, a research is conducted on multi-agent pursuit-evasion problem using reinforcement learning and the experimental results are shown. The intelligent agents use Watkins's Q(lambda)-learning algorithm to learn from their interactions. Q-learning is an off-policy temporal difference control algorithm. The method we utilize on the other hand, is a unified version of Q-learning and eligibility traces. It uses backup information until the first occurrence of an exploration. In our work, concurrent learning is adopted for the pursuit team. In this approach, each member of the team has got its own action-value function and updates its information space independently.en_US
dc.description.sponsorshipAselsan,et al.,IEEE Robotics and Automation Society,Kadir Has Universitesi,ODTU METU,TAI
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofProceedings of the 17th International Conference on Advanced Roboticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectReinforcement learningen_US
dc.subjectWatkins's Q(lambda)-learningen_US
dc.subjectPursuit evasionen_US
dc.subjectMulti-agent systemsen_US
dc.titleAn Approach To Multi-Agent Pursuit Evasion Games Using Reinforcement Learningen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage164
dc.identifier.endpage169
dc.authorid0000-0003-2334-1484-
dc.identifier.wosWOS:000380471000026en_US
dc.identifier.scopus2-s2.0-84957707469en_US
dc.institutionauthorKadıoğlu-Ürtiş, Esra-
dc.identifier.doi10.1109/ICAR.2015.7251450-
dc.authorscopusid6602637886-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

23
checked on Nov 9, 2024

Page view(s)

104
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.