Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1984
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSopaoğlu, Uğur-
dc.contributor.authorAbul, Osman-
dc.date.accessioned2019-07-10T14:42:44Z-
dc.date.available2019-07-10T14:42:44Z-
dc.date.issued2017-
dc.identifier.citationSopaoglu, U., & Abul, O. (2017, December). A top-down k-anonymization implementation for apache spark. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 4513-4521). IEEE.en_US
dc.identifier.isbn978-1-5386-2715-0-
dc.identifier.issn2639-1589-
dc.identifier.urihttps://ieeexplore.ieee.org/document/8258492/-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1984-
dc.descriptionIEEE International Conference on Big Data (IEEE Big Data) (2017 : Boston, MA)-
dc.description.abstractData science continues to evolve with each passing day and upgrades itself according to the exponentially increasing amount of data. The progression provides convenience to extract meaningful information from the huge amount of data from various domains including individual, public health, micro-blogging and sensors. The ability to process huge volume of data and to extract valuable information sometimes scare people especially when individual sensitive data is concerned. Many data privacy-preserving techniques are developed to overcome these fears. Over the years, these techniques are adapted to meet emerging type and increasing volume of data. For instance, to cope with today's big data we need more scalable and efficient methods. Big data platforms like Apache Hadoop and Apache Spark are highly utilized for this purpose. In this paper we study k-anonymization problem in the context of big data and develop a top-down specialization anonymization solution for Apache Spark platform. An extensive experimental evaluation has been carried out and the efficiency results are presented.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE International Conference on Big Dataen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectk-anonymityen_US
dc.subjecttop-down specializationen_US
dc.subjectbig dataen_US
dc.subjecthadoop mapreduceen_US
dc.subjectapache sparken_US
dc.titleA Top-Down K-Anonymization Implementation for Apache Sparken_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage4513-
dc.identifier.endpage4521-
dc.authorid0000-0002-9284-6112-
dc.identifier.wosWOS:000428073704074en_US
dc.identifier.scopus2-s2.0-85047754254en_US
dc.institutionauthorAbul, Osman-
dc.identifier.doi10.1109/BigData.2017.8258492-
dc.authorscopusid6602597612-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

12
checked on Nov 9, 2024

Page view(s)

92
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.