Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/1984
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sopaoğlu, Uğur | - |
dc.contributor.author | Abul, Osman | - |
dc.date.accessioned | 2019-07-10T14:42:44Z | - |
dc.date.available | 2019-07-10T14:42:44Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Sopaoglu, U., & Abul, O. (2017, December). A top-down k-anonymization implementation for apache spark. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 4513-4521). IEEE. | en_US |
dc.identifier.isbn | 978-1-5386-2715-0 | - |
dc.identifier.issn | 2639-1589 | - |
dc.identifier.uri | https://ieeexplore.ieee.org/document/8258492/ | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/1984 | - |
dc.description | IEEE International Conference on Big Data (IEEE Big Data) (2017 : Boston, MA) | - |
dc.description.abstract | Data science continues to evolve with each passing day and upgrades itself according to the exponentially increasing amount of data. The progression provides convenience to extract meaningful information from the huge amount of data from various domains including individual, public health, micro-blogging and sensors. The ability to process huge volume of data and to extract valuable information sometimes scare people especially when individual sensitive data is concerned. Many data privacy-preserving techniques are developed to overcome these fears. Over the years, these techniques are adapted to meet emerging type and increasing volume of data. For instance, to cope with today's big data we need more scalable and efficient methods. Big data platforms like Apache Hadoop and Apache Spark are highly utilized for this purpose. In this paper we study k-anonymization problem in the context of big data and develop a top-down specialization anonymization solution for Apache Spark platform. An extensive experimental evaluation has been carried out and the efficiency results are presented. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | IEEE International Conference on Big Data | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | k-anonymity | en_US |
dc.subject | top-down specialization | en_US |
dc.subject | big data | en_US |
dc.subject | hadoop mapreduce | en_US |
dc.subject | apache spark | en_US |
dc.title | A Top-Down k-Anonymization Implementation for Apache Spark | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 4513 | - |
dc.identifier.endpage | 4521 | - |
dc.authorid | 0000-0002-9284-6112 | - |
dc.identifier.wos | WOS:000428073704074 | en_US |
dc.identifier.scopus | 2-s2.0-85047754254 | en_US |
dc.institutionauthor | Abul, Osman | - |
dc.identifier.doi | 10.1109/BigData.2017.8258492 | - |
dc.authorscopusid | 6602597612 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | - | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
11
checked on Nov 2, 2024
WEB OF SCIENCETM
Citations
12
checked on Nov 2, 2024
Page view(s)
92
checked on Oct 28, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.