Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1995
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSezer, Ömer Berat-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.contributor.authorDoğdu, Erdoğan-
dc.date.accessioned2019-07-10T14:42:44Z
dc.date.available2019-07-10T14:42:44Z
dc.date.issued2017
dc.identifier.citationSezer, O. B., Ozbayoglu, M., & Dogdu, E. (2017). A Deep neural-network based stock trading system based on evolutionary optimized technical analysis parameters. Procedia computer science, 114, 473-480.en_US
dc.identifier.issn1877-0509
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1877050917318252?via%3Dihub-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1995-
dc.descriptionComplex Adaptive Systems Conference on Engineering Cyber Physical Systems (CAS) (2017 : Chicago, IL)
dc.description.abstractIn this study, we propose a stock trading system based on optimized technical analysis parameters for creating buy-sell points using genetic algorithms. The model is developed utilizing Apache Spark big data platform. The optimized parameters are then passed to a deep MLP neural network for buy-sell-hold predictions. Dow 30 stocks are chosen for model validation. Each Dow stock is trained separately using daily close prices between 1996-2016 and tested between 2007-2016. The results indicate that optimizing the technical indicator parameters not only enhances the stock trading performance but also provides a model that might be used as an alternative to Buy and Hold and other standard technical analysis models. (c) 2017 The Authors. Published by Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherELSEVIER Science BVen_US
dc.relation.ispartofProcedia Computer Scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectStock Tradingen_US
dc.subjectStock Marketen_US
dc.subjectDeep Neural-Networken_US
dc.subjectEvolutionary Algorithmsen_US
dc.subjectTechnical Analysisen_US
dc.titleA Deep Neural-Network Based Stock Trading System Based on Evolutionary Optimized Technical Analysis Parametersen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume114
dc.identifier.startpage473
dc.identifier.endpage480
dc.relation.tubitakinfo:eu-repo/grantAgreement/TÜBİTAK/EEEAG/215E248en_US
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000419234000057en_US
dc.identifier.scopus2-s2.0-85039995536en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1016/j.procs.2017.09.031-
dc.authorwosidH-2328-2011-
dc.authorscopusid6505999525-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextopen-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Ozbayoglu_Adeep.pdf726.13 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

34
checked on Nov 2, 2024

WEB OF SCIENCETM
Citations

54
checked on Nov 2, 2024

Page view(s)

128
checked on Nov 4, 2024

Download(s)

94
checked on Nov 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.