Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2003
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarimov, Jeyhun-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.contributor.authorDoğdu, Erdoğan-
dc.date.accessioned2019-07-10T14:42:45Z
dc.date.available2019-07-10T14:42:45Z
dc.date.issued2015
dc.identifier.citationKarimov, J., Ozbayoglu, M., & Dogdu, E. (2015, June). K-means performance improvements with centroid calculation heuristics both for serial and parallel environments. In 2015 IEEE International Congress on Big Data (pp. 444-451). IEEE.en_US
dc.identifier.isbn978-1-4673-7278-7
dc.identifier.issn2379-7703
dc.identifier.urihttps://ieeexplore.ieee.org/document/7207256-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2003-
dc.description4th IEEE International Congress on Big Data, BigData Congress  ( 2015 : New York City; United States)
dc.description.abstractk-means is the most widely used clustering algorithm due to its fairly straightforward implementations in various problems. Meanwhile, when the number of clusters increase, the number of iterations also tend to slightly increase. However there are still opportunities for improvement as some studies in the literature indicate. In this study, improved implementations of k-means algorithm with a centroid calculation heuristics which results in a performance improvement over traditional k-means are proposed. Two different versions of the algorithm for various data sizes are configured, one for small and the other one for big data implementations. Both the serial and MapReduce parallel implementations of the proposed algorithm are tested and analyzed using 2 different data sets with various number of clusters. The results show that big data implementation model outperforms the other compared methods after a certain threshold level and small data implementation performs better with increasing k value.en_US
dc.description.sponsorshipIEEE Computer Society Technical Committee on Services Computing (TC-SVC),Services Society (SS)
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofProceedings - 2015 IEEE International Congress on Big Data, BigData Congressen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectk-meansen_US
dc.subjectBig Dataen_US
dc.subjectHadoopen_US
dc.subjectMapReduceen_US
dc.subjectClusteringen_US
dc.subjectparallel algorithmsen_US
dc.subjectdata miningen_US
dc.subjectunsupervised learningen_US
dc.titleK-Means Performance Improvements With Centroid Calculation Heuristics Both for Serial and Parallel Environmentsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage444
dc.identifier.endpage451
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000380443700062en_US
dc.identifier.scopus2-s2.0-84959484303en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1109/BigDataCongress.2015.72-
dc.authorwosidH-2328-2011-
dc.authorscopusid6505999525-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

6
checked on Dec 14, 2024

Page view(s)

108
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.