Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/2003
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karimov, Jeyhun | - |
dc.contributor.author | Özbayoğlu, Ahmet Murat | - |
dc.contributor.author | Doğdu, Erdoğan | - |
dc.date.accessioned | 2019-07-10T14:42:45Z | |
dc.date.available | 2019-07-10T14:42:45Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Karimov, J., Ozbayoglu, M., & Dogdu, E. (2015, June). K-means performance improvements with centroid calculation heuristics both for serial and parallel environments. In 2015 IEEE International Congress on Big Data (pp. 444-451). IEEE. | en_US |
dc.identifier.isbn | 978-1-4673-7278-7 | |
dc.identifier.issn | 2379-7703 | |
dc.identifier.uri | https://ieeexplore.ieee.org/document/7207256 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/2003 | - |
dc.description | 4th IEEE International Congress on Big Data, BigData Congress ( 2015 : New York City; United States) | |
dc.description.abstract | k-means is the most widely used clustering algorithm due to its fairly straightforward implementations in various problems. Meanwhile, when the number of clusters increase, the number of iterations also tend to slightly increase. However there are still opportunities for improvement as some studies in the literature indicate. In this study, improved implementations of k-means algorithm with a centroid calculation heuristics which results in a performance improvement over traditional k-means are proposed. Two different versions of the algorithm for various data sizes are configured, one for small and the other one for big data implementations. Both the serial and MapReduce parallel implementations of the proposed algorithm are tested and analyzed using 2 different data sets with various number of clusters. The results show that big data implementation model outperforms the other compared methods after a certain threshold level and small data implementation performs better with increasing k value. | en_US |
dc.description.sponsorship | IEEE Computer Society Technical Committee on Services Computing (TC-SVC),Services Society (SS) | |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | Proceedings - 2015 IEEE International Congress on Big Data, BigData Congress | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | k-means | en_US |
dc.subject | Big Data | en_US |
dc.subject | Hadoop | en_US |
dc.subject | MapReduce | en_US |
dc.subject | Clustering | en_US |
dc.subject | parallel algorithms | en_US |
dc.subject | data mining | en_US |
dc.subject | unsupervised learning | en_US |
dc.title | K-Means Performance Improvements With Centroid Calculation Heuristics Both for Serial and Parallel Environments | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 444 | |
dc.identifier.endpage | 451 | |
dc.authorid | 0000-0001-7998-5735 | - |
dc.identifier.wos | WOS:000380443700062 | en_US |
dc.identifier.scopus | 2-s2.0-84959484303 | en_US |
dc.institutionauthor | Özbayoğlu, Ahmet Murat | - |
dc.identifier.doi | 10.1109/BigDataCongress.2015.72 | - |
dc.authorwosid | H-2328-2011 | - |
dc.authorscopusid | 6505999525 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | - | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
5
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
6
checked on Dec 14, 2024
Page view(s)
108
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.