Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2004
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarimov, Jeyhun-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.date.accessioned2019-07-10T14:42:45Z
dc.date.available2019-07-10T14:42:45Z
dc.date.issued2015
dc.identifier.citationKarimov, J., & Ozbayoglu, M. (2015, October). High quality clustering of big data and solving empty-clustering problem with an evolutionary hybrid algorithm. In 2015 IEEE International Conference on Big Data (Big Data) (pp. 1473-1478). IEEE.en_US
dc.identifier.isbn978-1-4799-9925-5
dc.identifier.urihttps://ieeexplore.ieee.org/document/7363909-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2004-
dc.description3rd IEEE International Conference on Big Data, IEEE Big Data (2015 : Santa Clara; United States)
dc.description.abstractAchieving high quality clustering is one of the most well-known problems in data mining. k-means is by far the most commonly used clustering algorithm. It converges fairly quickly, but achieving a good solution is not guaranteed. The clustering quality is highly dependent on the selection of the initial centroid selections. Moreover, when the number of clusters increases, it starts to suffer from "empty clustering". The motivation in this study is two-fold. We not only aim at improving the k-means clustering quality, but at the same time not being effected by the empty cluster issue. For achieving this purpose, we developed a hybrid model, H(EC)S-2, Hybrid Evolutionary Clustering with Empty Clustering Solution. Firstly, it selects representative points to eliminate Empty Clustering problem. Then, the hybrid algorithm uses only these points during centroid selection. The proposed model combines Fireworks and Cuckoo-search based evolutionary algorithm with some centroid-calculation heuristics. The model is implemented using a Hadoop Mapreduce algorithm for achieving scalability when faced with a Big Data clustering problem. The advantages of the developed model is particularly attractive when the amount, dimensionality and number of cluster parameters tend to increase. The results indicate that considerable clustering quality performance improvement is achieved using the proposed model.en_US
dc.description.sponsorshipCCF,et al.,Huawi,IEEE Computer Society,National Science Foundation (NSF),Springer
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofProceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectclusteringen_US
dc.subjectk-meansen_US
dc.subjectevolutionary algorithmsen_US
dc.subjectCuckoo searchen_US
dc.subjectFireworks algorithmen_US
dc.subjectHadoopen_US
dc.subjectMapreduceen_US
dc.titleHigh Quality Clustering of Big Data and Solving Empty-Clustering Problem With an Evolutionary Hybrid Algorithmen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage1473
dc.identifier.endpage1478
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000380404600177en_US
dc.identifier.scopus2-s2.0-84963739288en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1109/BigData.2015.7363909-
dc.authorwosidH-2328-2011-
dc.authorscopusid6505999525-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

13
checked on Dec 14, 2024

Page view(s)

94
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.