Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2006
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞahin, Uğur-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.date.accessioned2019-07-10T14:42:45Z
dc.date.available2019-07-10T14:42:45Z
dc.date.issued2014
dc.identifier.citationSahin, U., & Ozbayoglu, A. M. (2014). TN-RSI: Trend-normalized RSI indicator for stock trading systems with evolutionary computation. Procedia Computer Science, 36, 240-245.en_US
dc.identifier.issn1877-0509
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1877050914013350?via%3Dihub-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2006-
dc.descriptionComplex Adaptive Systems (2014 : United States)
dc.description.abstractRSI is a commonly used indicator preferred by stock traders. However, even though it works well when the market is trendless, during bull or bear market conditions (when there is a clear trend) its performance degrades. In this study, we developed a trading model using a modified RSI using trend-removed stock data. The model has several parameters including, the trend detection period, RSI buy-sell trigger levels and periods. These parameters are optimized using genetic algorithms; then the trading performance is compared against B&H and standard RSI indicator usage. 9 different ETFs are selected for evaluating trading performance. The results indicate there is a performance improvement both in profit and success rates using this new model. As future work, other indicators might be modelled in a similar fashion in order to see if it is possible to find one indicator that can work under any market condition. (C) 2014 The Authors. Published by Elsevier B.V.en_US
dc.description.sponsorshipMissouri S and T, Penn State Online and INCOSE
dc.language.isoenen_US
dc.publisherELSEVIER Science BVen_US
dc.relation.ispartofProcedia Computer Scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectstock market forecastingen_US
dc.subjectRSIen_US
dc.subjectgenetic algorithmsen_US
dc.subjectstock tradingen_US
dc.subjectevolutionary computationen_US
dc.subjecttrend detectionen_US
dc.titleTN-RSI: Trend-Normalized RSI indicator for Stock Trading Systems with Evolutionary Computationen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume36
dc.identifier.startpage240
dc.identifier.endpage245
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000349978000031en_US
dc.identifier.scopus2-s2.0-84938564135en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1016/j.procs.2014.09.086-
dc.authorwosidH-2328-2011-
dc.authorscopusid6505999525-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextopen-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
ozbayoglu-TN-RSI.pdf344.37 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Nov 2, 2024

WEB OF SCIENCETM
Citations

15
checked on Nov 2, 2024

Page view(s)

92
checked on Nov 4, 2024

Download(s)

22
checked on Nov 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.