Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/2011
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Taşpınar, Samet | - |
dc.contributor.author | Sencar, Hüsrev Taha | - |
dc.contributor.author | Bayram, Sevinç | - |
dc.contributor.author | Memon, Nasir | - |
dc.date.accessioned | 2019-07-10T14:42:45Z | |
dc.date.available | 2019-07-10T14:42:45Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Taspinar, S., Sencar, H. T., Bayram, S., & Memon, N. (2017, September). Fast camera fingerprint matching in very large databases. In 2017 IEEE International Conference on Image Processing (ICIP) (pp. 4088-4092). IEEE. | en_US |
dc.identifier.isbn | 978-1-5090-2175-8 | |
dc.identifier.issn | 1522-4880 | |
dc.identifier.uri | https://ieeexplore.ieee.org/document/8297051/ | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/2011 | - |
dc.description | 24th IEEE International Conference on Image Processing (2017 : Beijing; China) | |
dc.description.abstract | Given a query image or video, or a known camera fingerprint, there is a lack of capabilities for fast identification of media, from a large repository of images and videos, that match the query fingerprint. This work introduces a new approach that improves the computation efficiency of pairwise camera fingerprint matching and incorporates group testing to make the search more effective. More specifically, we jointly leverage the individual strengths of composite fingerprints and fingerprint digests in a novel manner and design two methods that are superior to existing approaches. The results show that under very high-performance requirements, where the probability of correct identification is close to one with a false-positive rate of zero, the proposed search methods are 2-8 times faster than the state-of-art search methods. | en_US |
dc.description.sponsorship | The Institute of Electrical and Electronics Engineers Signal Processing Society | |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | IEEE International Conference on Image Processing ICIP | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Sensor noise | en_US |
dc.subject | PRNU noise | en_US |
dc.subject | camera fingerprint | en_US |
dc.subject | composite fingerprint | en_US |
dc.subject | fingerprint digests | en_US |
dc.title | Fast camera fingerprint matching in very large databases | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 4088 | |
dc.identifier.endpage | 4092 | |
dc.authorid | 0000-0001-6910-6194 | - |
dc.identifier.wos | WOS:000428410704044 | en_US |
dc.identifier.scopus | 2-s2.0-85045335199 | en_US |
dc.institutionauthor | Sencar, Hüsrev Taha | - |
dc.identifier.doi | 10.1109/ICIP.2017.8297051 | - |
dc.authorscopusid | 8616233200 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | - | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
4
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
4
checked on Dec 14, 2024
Page view(s)
62
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.