Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2017
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeyfioğlu, Mehmet Saygın-
dc.contributor.authorSerinöz, A.-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.contributor.authorGürbüz, Sevgi Zübeyde-
dc.date.accessioned2019-07-10T14:42:46Z
dc.date.available2019-07-10T14:42:46Z
dc.date.issued2017-10-26
dc.identifier.citationSeyfioğlu, M. S., Serinöz, A., Özbayoğlu, M., & Gürbüz, S. Z. (2017). Feature diverse hierarchical classification of human gait with CW radar for assisted living.en_US
dc.identifier.urihttps://digital-library.theiet.org/content/conferences/10.1049/cp.2017.0379-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2017-
dc.descriptionInternational Conference on Radar Systems (2017 : United Kingdom)
dc.description.abstractActivity recognition and estimation of gait parameter are medically essential components of remote health monitoring systems that can improve quality of life, enable personalized treatments, acquire continual medical data to better inform doctors of the patient's well-being, reduce health costs, and ensure rapid response to medical emergencies. Discriminating between a large number of oftentimes similar activities using the radar micro-Doppler effect, however, requires extraction of features that can capture differences in nuances within the signatures. This optimal feature set varies according to the number and type of classes involved. Thus, this work proposes a novel feature diverse hierarchical classification structure, which prevents significant sources of confusion between classes. Our results show a 19% reduction in confusion between creeping and crawling and an elimination of confusion between falling and walking, yielding an overall 7.3% performance improvement above a multi-class support vector machine classifier. © 2017 Institution of Engineering and Technology. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherInstitution of Engineering and Technologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRadaren_US
dc.subjectFeature extractionen_US
dc.subjectscattering centersen_US
dc.titleFeature Diverse Hierarchical Classification of Human Gait With Cw Radar for Assisted Livingen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesIET Conference Publicationsen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume2017
dc.identifier.issueCP728
dc.authorid0000-0001-7998-5735-
dc.identifier.scopus2-s2.0-85048660204en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1049/cp.2017.0379-
dc.authorwosidH-2328-2011-
dc.authorscopusid6505999525-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

Page view(s)

1,054
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.