Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2022
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTandoğan, Sinan Erkam-
dc.contributor.authorSencar, Hüsrev Taha-
dc.contributor.authorTavlı, Bülent-
dc.date.accessioned2019-07-10T14:42:46Z
dc.date.available2019-07-10T14:42:46Z
dc.date.issued2017
dc.identifier.citationTandogan, S. E., Sencar, H. T., & Tavli, B. (2017, December). Towards measuring uniqueness of human voice. In 2017 IEEE Workshop on Information Forensics and Security (WIFS) (pp. 1-6). IEEE.en_US
dc.identifier.isbn978-1-5090-6769-5
dc.identifier.issn2157-4766
dc.identifier.urihttps://ieeexplore.ieee.org/document/8267666-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2022-
dc.description2017 IEEE WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS) (2017 : Rennes; France)
dc.description.abstractThe use of voice as a biometric modality for user authentication and identification has grown very rapidly. It is therefore very important that we understand limitations of such systems which will ultimately depend on the discriminative power of the voice biometric. In this paper, we have contributed towards measuring distinctiveness of voice biometric by both formulating a new measure and creating a new dataset to perform more reliable measurements. For this purpose, we evaluate the prominent approaches in the field and propose a new approach that better incorporates within-user variability and is analytically more tractable. Our newly created dataset includes voice samples extracted from close to two thousand TED Talks videos. Overall our measurements on this dataset revealed a biometric information content of about 60 bits in human voice. Further, tests performed by adding some generic voice effects on the samples show that the distinctiveness reduces by almost 20 bits, implying that when true variability is reflected in user samples resulting entropy may further reduce.en_US
dc.description.sponsorshipBİDEB-2210
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE International Workshop on Information Forensics and Securityen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSpeechen_US
dc.subjectVerificationen_US
dc.subjecttext-independent speakeren_US
dc.titleTowards Measuring Uniqueness of Human Voiceen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.authorid0000-0001-6910-6194-
dc.authorid0000-0002-9615-1983-
dc.identifier.wosWOS:000426121000026en_US
dc.identifier.scopus2-s2.0-85049788007en_US
dc.institutionauthorSencar, Hüsrev Taha-
dc.institutionauthorTavlı, Bülent-
dc.identifier.doi10.1109/WIFS.2017.8267666-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeConference Object-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 2, 2024

Page view(s)

78
checked on Oct 28, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.