Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2024
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPancaroglu, Doruk-
dc.contributor.authorTan, Mehmet-
dc.date.accessioned2019-07-10T14:42:46Z
dc.date.available2019-07-10T14:42:46Z
dc.date.issued2014
dc.identifier.citationPancaroglu, D., & Tan, M. (2014). Improving Positive Unlabeled Learning Algorithms for Protein Interaction Prediction. In 8th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2014) (pp. 81-88). Springer, Cham.en_US
dc.identifier.isbn978-3-319-07581-5
dc.identifier.isbn978-3-319-07580-8
dc.identifier.issn2194-5357
dc.identifier.urihttps://link.springer.com/chapter/10.1007%2F978-3-319-07581-5_10-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2024-
dc.description8th International Conference on Practical Applications of Computational Biology and Bioinformatics (2014 : Salamanca; Spain)
dc.description.abstractIn binary classification, it is sometimes difficult to label two training samples as negative. The aforementioned difficulty in obtaining true negative samples created a need for learning algorithms which does not use negative samples. This study aims to improve upon two PU learning algorithms, AGPS[2] and Roc-SVM[3] for protein interaction prediction. Two extensions to these algorithms is proposed; the first one is to use Random Forests as the classifier instead of support vector machines and the second is to combine the results of AGPS and Roc-SVM using a voting system. After these two approaches are implemented, their results was compared to the original algorithms as well as two well-known learning algorithms, ARACNE [9] and CLR [10]. In the comparisons, both the Random Forest ( called AGPS-RF and Roc-RF) and the Hybrid algorithm performed well against the original SVM-classified ones. The improved algorithms also performed well against ARACNE and CLR.en_US
dc.language.isoenen_US
dc.publisherSPRINGER-Verlag Berlinen_US
dc.relation.ispartofAdvances in Intelligent Systems and Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectProtein Interaction Networksen_US
dc.subjectBinary Classificationen_US
dc.subjectPositive Unlabeled Learningen_US
dc.subjectRandom Forestsen_US
dc.subjectSupport Vector Machinesen_US
dc.titleImproving Positive Unlabeled Learning Algorithms for Protein Interaction Predictionen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume294
dc.identifier.startpage81
dc.identifier.endpage88
dc.authorid0000-0002-1741-0570-
dc.identifier.wosWOS:000351276700010en_US
dc.identifier.scopus2-s2.0-84921796211en_US
dc.institutionauthorTan, Mehmet-
dc.identifier.doi10.1007/978-3-319-07581-5_10-
dc.authorwosidI-2328-2019-
dc.authorscopusid36984623900-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

2
checked on Dec 14, 2024

Page view(s)

124
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.