Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2025
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTan, Mehmet-
dc.date.accessioned2019-07-10T14:42:46Z
dc.date.available2019-07-10T14:42:46Z
dc.date.issued2014
dc.identifier.citationTan, M. (2014, November). Drug sensitivity prediction for cancer cell lines based on pairwise kernels and miRNA profiles. In 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 156-161). IEEE.en_US
dc.identifier.isbn978-1-4799-5669-2
dc.identifier.issn2156-1125
dc.identifier.urihttps://ieeexplore.ieee.org/document/6999145-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2025-
dc.descriptionIEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM) (2014 : Belfast; United Kingdom)
dc.description.abstractCancer cell lines comprise an important tool to design and evaluate new drug candidates. Prediction of in vivo drug response for cancer cell lines has become attractive due to recently issued large scale drug screen databases. The data provided by these databases can be the key to model drug sensitivity for cancer cell lines. The data provided by these databases is in the form of drug cell line pairs where a natural method for prediction of drug response, therefore is pairwise support vector machines. This paper presents results on the application of pairwise kernels for drug response prediction, where the results are promising compared to some previously well-performed methods on this task. In addition, effect of exploiting microRNA profiles of cancer cell lines together with mRNA profiles is given.en_US
dc.description.sponsorshipBioBusiness,et al.,IEEE,National Science Foundation (NSF),Nsilico-Simplicity,University of Ulster
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE International Conference on Bioinformatics and Biomedicine-BIBMen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPharmaceutical Preparationsen_US
dc.subjectNeoplasmsen_US
dc.subjectSensitivity predictionen_US
dc.titleDrug Sensitivity Prediction for Cancer Cell Lines Based on Pairwise Kernels and Mirna Profilesen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.authorid0000-0002-1741-0570-
dc.identifier.wosWOS:000377412300181en_US
dc.identifier.scopus2-s2.0-84922787395en_US
dc.institutionauthorTan, Mehmet-
dc.identifier.doi10.1109/BIBM.2014.6999145-
dc.authorwosidI-2328-2019-
dc.authorscopusid36984623900-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

Page view(s)

84
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.